Suppr超能文献

优化用于气相色谱 - 质谱代谢组学数据处理的XCMS参数:一个案例研究

Optimizing XCMS parameters for GC-MS metabolomics data processing: a case study.

作者信息

Dos Santos Emile Kelly Porto, Canuto Gisele André Baptista

机构信息

Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil.

出版信息

Metabolomics. 2023 Mar 28;19(4):26. doi: 10.1007/s11306-023-01992-1.

Abstract

BACKGROUND AND AIMS

Optimizing metabolomics data processing parameters is a challenging and fundamental task to obtain reliable results. Automated tools have been developed to assist this optimization for LC-MS data. GC-MS data require substantial modifications in processing parameters, as the chromatographic profiles are more robust, with more symmetrical and Gaussian peaks. This work compared an automated XCMS parameter optimization using the Isotopologue Parameter Optimization (IPO) software with manual optimization of GC-MS metabolomics data. Additionally, the results were compared to online XCMS platform.

METHODS

GC-MS data from control and test groups of intracellular metabolites from Trypanosoma cruzi trypomastigotes were used. Optimizations were performed on the quality control (QC) samples.

RESULTS

The results in terms of the number of molecular features extracted, repeatability, missing values, and the search for significant metabolites showed the importance of optimizing the parameters for peak detection, alignment, and grouping, especially those related to peak width (fwhm, bw) and noise ratio (snthresh).

CONCLUSION

This is the first time that a systematic optimization using IPO has been performed on GC-MS data. The results demonstrate that there is no universal approach for optimization but automated tools are valuable at this stage of the metabolomics workflow. The online XCMS proves to be an interesting processing tool, helping, above all, in the choice of parameters as a starting point for adjustments and optimizations. Although the tools are easy to use, there is still a need for technical knowledge about the analytical methods and instruments used.

摘要

背景与目的

优化代谢组学数据处理参数是获得可靠结果的一项具有挑战性的基础任务。已开发出自动化工具来辅助液相色谱 - 质谱(LC - MS)数据的这种优化。气相色谱 - 质谱(GC - MS)数据在处理参数方面需要大量修改,因为其色谱图更稳定,峰更对称且呈高斯分布。本研究比较了使用同位素异构体参数优化(IPO)软件对GC - MS代谢组学数据进行自动化XCMS参数优化与手动优化的效果。此外,还将结果与在线XCMS平台进行了比较。

方法

使用来自克氏锥虫无鞭毛体胞内代谢物对照组和测试组的GC - MS数据。对质量控制(QC)样本进行优化。

结果

在提取的分子特征数量、重复性、缺失值以及寻找显著代谢物方面的结果表明,优化峰检测、对齐和分组参数非常重要,特别是那些与峰宽(半高宽,bw)和噪声比(snthresh)相关的参数。

结论

这是首次对GC - MS数据使用IPO进行系统优化。结果表明不存在通用的优化方法,但在代谢组学工作流程的这一阶段自动化工具很有价值。在线XCMS被证明是一个有趣的处理工具,尤其有助于选择参数作为调整和优化的起点。尽管这些工具易于使用,但仍需要有关所用分析方法和仪器的技术知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验