Suppr超能文献

多组学并不能替代全基因组关联研究中的样本量。

Multi-omics cannot replace sample size in genome-wide association studies.

机构信息

Department of Psychological & Brain Sciences, Washington University in St. Louis Medical School, Saint Louis, Missouri, USA.

Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, USA.

出版信息

Genes Brain Behav. 2023 Dec;22(6):e12846. doi: 10.1111/gbb.12846. Epub 2023 Mar 28.

Abstract

The integration of multi-omics information (e.g., epigenetics and transcriptomics) can be useful for interpreting findings from genome-wide association studies (GWAS). It has been suggested that multi-omics could circumvent or greatly reduce the need to increase GWAS sample sizes for novel variant discovery. We tested whether incorporating multi-omics information in earlier and smaller-sized GWAS boosts true-positive discovery of genes that were later revealed by larger GWAS of the same/similar traits. We applied 10 different analytic approaches to integrating multi-omics data from 12 sources (e.g., Genotype-Tissue Expression project) to test whether earlier and smaller GWAS of 4 brain-related traits (alcohol use disorder/problematic alcohol use, major depression/depression, schizophrenia, and intracranial volume/brain volume) could detect genes that were revealed by a later and larger GWAS. Multi-omics data did not reliably identify novel genes in earlier less-powered GWAS (PPV <0.2; 80% false-positive associations). Machine learning predictions marginally increased the number of identified novel genes, correctly identifying 1-8 additional genes, but only for well-powered early GWAS of highly heritable traits (i.e., intracranial volume and schizophrenia). Although multi-omics, particularly positional mapping (i.e., fastBAT, MAGMA, and H-MAGMA), can help to prioritize genes within genome-wide significant loci (PPVs = 0.5-1.0) and translate them into information about disease biology, it does not reliably increase novel gene discovery in brain-related GWAS. To increase power for discovery of novel genes and loci, increasing sample size is required.

摘要

多组学信息(例如,表观遗传学和转录组学)的整合对于解释全基因组关联研究(GWAS)的结果可能是有用的。有人认为,多组学可以避免或大大减少为发现新变体而增加 GWAS 样本量的必要性。我们测试了在早期和较小规模的 GWAS 中纳入多组学信息是否可以提高后来通过相同/相似特征的更大 GWAS 揭示的基因的真正阳性发现。我们应用了 10 种不同的分析方法,整合了来自 12 个来源的多组学数据(例如,基因型-组织表达项目),以测试 4 个与大脑相关的特征(酒精使用障碍/问题性饮酒、重度抑郁症/抑郁症、精神分裂症和颅内体积/脑容量)的早期和较小规模的 GWAS 是否可以检测到后来更大规模的 GWAS 揭示的基因。多组学数据无法可靠地识别早期、功率较低的 GWAS 中的新基因(PPV<0.2;80%的假阳性关联)。机器学习预测略微增加了识别的新基因数量,正确识别了 1-8 个额外的基因,但仅适用于具有高度遗传性特征的早期、功率较高的 GWAS(即颅内体积和精神分裂症)。尽管多组学,特别是定位映射(即 fastBAT、MAGMA 和 H-MAGMA),可以帮助在全基因组显著位点(PPV=0.5-1.0)中优先考虑基因,并将其转化为有关疾病生物学的信息,但它并不能可靠地增加与大脑相关的 GWAS 中新基因的发现。为了增加发现新基因和位点的能力,需要增加样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d70b/10733567/fa954c79fdc2/GBB-22-e12846-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验