Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland.
Interschool Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland.
BMC Bioinformatics. 2023 Mar 28;24(1):120. doi: 10.1186/s12859-023-05214-2.
High-throughput and selective detection of organelles in immunofluorescence images is an important but demanding task in cell biology. The centriole organelle is critical for fundamental cellular processes, and its accurate detection is key for analysing centriole function in health and disease. Centriole detection in human tissue culture cells has been achieved typically by manual determination of organelle number per cell. However, manual cell scoring of centrioles has a low throughput and is not reproducible. Published semi-automated methods tally the centrosome surrounding centrioles and not centrioles themselves. Furthermore, such methods rely on hard-coded parameters or require a multichannel input for cross-correlation. Therefore, there is a need for developing an efficient and versatile pipeline for the automatic detection of centrioles in single channel immunofluorescence datasets.
We developed a deep-learning pipeline termed CenFind that automatically scores cells for centriole numbers in immunofluorescence images of human cells. CenFind relies on the multi-scale convolution neural network SpotNet, which allows the accurate detection of sparse and minute foci in high resolution images. We built a dataset using different experimental settings and used it to train the model and evaluate existing detection methods. The resulting average F-score achieved by CenFind is > 90% across the test set, demonstrating the robustness of the pipeline. Moreover, using the StarDist-based nucleus detector, we link the centrioles and procentrioles detected with CenFind to the cell containing them, overall enabling automatic scoring of centriole numbers per cell.
Efficient, accurate, channel-intrinsic and reproducible detection of centrioles is an important unmet need in the field. Existing methods are either not discriminative enough or focus on a fixed multi-channel input. To fill this methodological gap, we developed CenFind, a command line interface pipeline that automates cell scoring of centrioles, thereby enabling channel-intrinsic, accurate and reproducible detection across experimental modalities. Moreover, the modular nature of CenFind enables its integration in other pipelines. Overall, we anticipate CenFind to prove critical for accelerating discoveries in the field.
在免疫荧光图像中高通量且选择性地检测细胞器是细胞生物学中的一项重要但具有挑战性的任务。中心体细胞器对于基本的细胞过程至关重要,其准确检测是分析健康和疾病中中心体功能的关键。在人类组织培养细胞中,中心体的检测通常通过手动确定每个细胞的细胞器数量来实现。然而,手动细胞中心体评分的通量低且不可重复。已发表的半自动方法统计中心体周围的中心体,而不是中心体本身。此外,此类方法依赖于硬编码参数或需要多通道输入进行互相关。因此,需要开发一种用于在单通道免疫荧光数据集自动检测中心体的高效、通用的流水线。
我们开发了一种称为 CenFind 的深度学习流水线,该流水线可自动对人类细胞免疫荧光图像中的中心体数量进行细胞评分。CenFind 依赖于多尺度卷积神经网络 SpotNet,它允许在高分辨率图像中准确检测稀疏和微小的焦点。我们使用不同的实验设置构建了一个数据集,并使用该数据集来训练模型和评估现有的检测方法。CenFind 在测试集中实现的平均 F 分数超过 90%,证明了该流水线的稳健性。此外,我们使用基于 StarDist 的核探测器,将 CenFind 检测到的中心体和前中心体与包含它们的细胞联系起来,从而实现每个细胞中心体数量的自动评分。
在该领域,高效、准确、通道内在和可重复的中心体检测是一个未满足的重要需求。现有的方法要么不够有区分度,要么专注于固定的多通道输入。为了填补这一方法学空白,我们开发了 CenFind,这是一个命令行接口流水线,可自动对细胞进行中心体评分,从而实现跨实验模式的通道内在、准确和可重复的检测。此外,CenFind 的模块化性质使其能够集成到其他流水线中。总的来说,我们预计 CenFind 将对加速该领域的发现至关重要。