Schweiger Giovanna, Malorgio Amos, Henckert David, Braun Julia, Meybohm Patrick, Hottenrott Sebastian, Froehlich Corinna, Zacharowski Kai, Raimann Florian J, Piekarski Florian, Noethiger Christoph B, Spahn Donat R, Tscholl David W, Roche Tadzio R
Department of Anaesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
Departments of Epidemiology and Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, 8006 Zurich, Switzerland.
Bioengineering (Basel). 2023 Feb 25;10(3):293. doi: 10.3390/bioengineering10030293.
Acid-base homeostasis is crucial for all physiological processes in the body and is evaluated using arterial blood gas (ABG) analysis. Screens or printouts of ABG results require the interpretation of many textual elements and numbers, which may delay intuitive comprehension. To optimise the presentation of the results for the specific strengths of human perception, we developed Visual Blood, an animated virtual model of ABG results. In this study, we compared its performance with a conventional result printout. Seventy physicians from three European university hospitals participated in a computer-based simulation study. Initially, after an educational video, we tested the participants' ability to assign individual Visual Blood visualisations to their corresponding ABG parameters. As the primary outcome, we tested caregivers' ability to correctly diagnose simulated clinical ABG scenarios with Visual Blood or conventional ABG printouts. For user feedback, participants rated their agreement with statements at the end of the study. Physicians correctly assigned 90% of the individual Visual Blood visualisations. Regarding the primary outcome, the participants made the correct diagnosis 86% of the time when using Visual Blood, compared to 68% when using the conventional ABG printout. A mixed logistic regression model showed an odds ratio for correct diagnosis of 3.4 (95%CI 2.00-5.79, < 0.001) and an odds ratio for perceived diagnostic confidence of 1.88 (95%CI 1.67-2.11, < 0.001) in favour of Visual Blood. A linear mixed model showed a coefficient for perceived workload of -3.2 (95%CI -3.77 to -2.64) in favour of Visual Blood. Fifty-one of seventy (73%) participants agreed or strongly agreed that Visual Blood was easy to use, and fifty-five of seventy (79%) agreed that it was fun to use. In conclusion, Visual Blood improved physicians' ability to diagnose ABG results. It also increased perceived diagnostic confidence and reduced perceived workload. This study adds to the growing body of research showing that decision-support tools developed around human cognitive abilities can streamline caregivers' decision-making and may improve patient care.
酸碱平衡对于身体的所有生理过程都至关重要,并且通过动脉血气(ABG)分析进行评估。ABG结果的屏幕显示或打印输出需要解读许多文本元素和数字,这可能会延迟直观理解。为了根据人类感知的特定优势优化结果呈现,我们开发了Visual Blood,这是一个ABG结果的动画虚拟模型。在本研究中,我们将其性能与传统的结果打印输出进行了比较。来自三家欧洲大学医院的70名医生参与了一项基于计算机的模拟研究。最初,在观看一段教育视频后,我们测试了参与者将单个Visual Blood可视化与相应ABG参数进行匹配的能力。作为主要结果,我们测试了护理人员使用Visual Blood或传统ABG打印输出正确诊断模拟临床ABG场景的能力。为了获取用户反馈,参与者在研究结束时对一些陈述表示同意程度进行了评分。医生正确匹配了90%的单个Visual Blood可视化。关于主要结果,参与者使用Visual Blood时86%的时间做出了正确诊断,而使用传统ABG打印输出时这一比例为68%。一个混合逻辑回归模型显示,支持Visual Blood的正确诊断优势比为3.4(95%置信区间2.00 - 5.79,P < 0.001),感知诊断信心优势比为1.88(95%置信区间1.67 - 2.11,P < 0.001)。一个线性混合模型显示,支持Visual Blood的感知工作量系数为 - 3.2(95%置信区间 - 3.77至 - 2.64)。70名参与者中有51名(73%)同意或强烈同意Visual Blood易于使用,70名中有55名(79%)同意使用它很有趣。总之,Visual Blood提高了医生诊断ABG结果的能力。它还增加了感知诊断信心并减少了感知工作量。这项研究为越来越多的研究增添了内容,表明围绕人类认知能力开发的决策支持工具可以简化护理人员的决策过程,并可能改善患者护理。