Richardson Richard B, Mailloux Ryan J
Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada.
McGill Medical Physics Unit, Cedars Cancer Centre-Glen Site, McGill University, Montreal, QC H4A 3J1, Canada.
Antioxidants (Basel). 2023 Mar 9;12(3):674. doi: 10.3390/antiox12030674.
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep-wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The "redox-bioenergetics-temperature and differential mitochondrial-nuclear regulatory hypothesis" adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox-bioenergetics-temperature-regulated sleep-wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
尽管线粒体和细胞的昼夜生物节律高度保守,对复杂动物的健康至关重要,但关于氧化应激、氧化还原修饰、代谢、体温调节和其他主要振荡生理过程之间的相互作用,研究却很少。为了克服这一局限性,我们假设氧化还原组、生物能量学和温度信号的昼夜/超昼夜相互作用强烈地决定了哺乳动物和鸟类睡眠-觉醒循环的差异活动。蛋白质通过可逆的半胱氨酸氧化形式、S-谷胱甘肽化和S-亚硝基化进行的翻译后修饰,在调节线粒体活性氧生成、蛋白质活性、呼吸作用和代谢组学方面发挥着重要作用。核DNA修复和细胞蛋白质合成在清醒阶段最大化,而氧化还原组在睡眠期间恢复,线粒体重塑最大化。因此,我们的分析表明,清醒对细胞核更具保护和恢复作用(核恢复性),而睡眠对线粒体更具保护和恢复作用(线粒体恢复性)。“氧化还原-生物能量学-温度和线粒体-细胞核差异调节假说”有助于理解线粒体呼吸解偶联、底物循环控制和冬眠。同样,这一假说解释了由线粒体相互作用组紊乱引起的振荡性氧化还原-生物能量学-温度调节的睡眠-觉醒状态如何影响衰老、癌症、太空飞行健康效应、婴儿猝死综合征以及代谢和神经系统疾病的发病机制。