Suppr超能文献

调查医学生大学入学前的录取要求及其与学业成绩的相关性:一种教育数据挖掘方法。

Investigating Students' Pre-University Admission Requirements and Their Correlation with Academic Performance for Medical Students: An Educational Data Mining Approach.

作者信息

Qahmash Ayman, Ahmad Naim, Algarni Abdulmohsen

机构信息

Department of Information Systems, King Khalid University, Alfara, Abha 61421, Saudi Arabia.

Department of Computer Science, King Khalid University, Alfara, Abha 61421, Saudi Arabia.

出版信息

Brain Sci. 2023 Mar 8;13(3):456. doi: 10.3390/brainsci13030456.

Abstract

Medical education is one of the most sought-after disciplines for its prestigious and noble status. Institutions endeavor to identify admissions criteria to register bright students who can handle the complexity of medical training and become competent clinicians. This study aims to apply statistical and educational data mining approaches to study the relationship between pre-admission criteria and student performance in medical programs at a public university in Saudi Arabia. The present study is a retrospective cohort study conducted at the College of Computer Science, King Khalid University, Abha, Kingdom of Saudi Arabia between February and November 2022. The current pre-admission criterion is the admission score taken as the weighted average of high school percentage (HSP), general aptitude test (GAT) and standard achievement admission test (SAAT), with respective weights of 0.3, 0.3 and 0.4. Regression and optimization techniques have been applied to identify weightages that better fit the data. Five classification techniques-Decision Tree, Neural Network, Random Forest, Naïve Bayes and K-Nearest Neighbors-are employed to develop models to predict student performance. The regression and optimization analyses show that optimized weights of HSP, GAT and SAAT are 0.3, 0.2 and 0.5, respectively. The results depict that the performance of the models improves with admission scores based on optimized weightages. Further, the Neural Network and Naïve Bayes techniques outperform other techniques. Firstly, this study proposes to revise the weights of HSP, GAT and SAAT to 0.3, 0.2 and 0.5, respectively. Secondly, as the evaluation metrics of models remain less than 0.75, this study proposes to identify additional student features for calculating admission scores to select ideal candidates for medical programs.

摘要

医学教育因其声望和崇高地位而成为最受欢迎的学科之一。各院校努力确定录取标准,以招收能够应对医学培训复杂性并成为合格临床医生的优秀学生。本研究旨在应用统计和教育数据挖掘方法,研究沙特阿拉伯一所公立大学医学项目的入学前标准与学生成绩之间的关系。本研究是一项回顾性队列研究,于2022年2月至11月在沙特阿拉伯王国阿卜哈市的哈利德国王大学计算机科学学院进行。当前的入学前标准是录取分数,该分数作为高中成绩百分比(HSP)、一般能力倾向测试(GAT)和标准成绩入学测试(SAAT)的加权平均值,其权重分别为0.3、0.3和0.4。已应用回归和优化技术来确定更适合数据的权重。采用决策树、神经网络、随机森林、朴素贝叶斯和K近邻五种分类技术来开发预测学生成绩的模型。回归和优化分析表明,HSP、GAT和SAAT的优化权重分别为0.3、0.2和0.5。结果表明,基于优化权重的录取分数,模型的性能有所提高。此外,神经网络和朴素贝叶斯技术的表现优于其他技术。首先,本研究建议将HSP、GAT和SAAT的权重分别修订为0.3、0.2和0.5。其次,由于模型的评估指标仍低于0.75,本研究建议确定额外的学生特征以计算录取分数,从而为医学项目挑选理想的候选人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e13/10046873/29fe7b136d3b/brainsci-13-00456-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验