Suppr超能文献

预测医学一年级学生的学业进展和相关属性:使用人工神经网络和朴素贝叶斯进行分析。

Predicting students' academic progress and related attributes in first-year medical students: an analysis with artificial neural networks and Naïve Bayes.

机构信息

Coordination of Open University, Educational Innovation and Distance Education, (CUAIEED), National Autonomous University of Mexico (UNAM), Mexico City, Mexico.

Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.

出版信息

BMC Med Educ. 2024 Jan 19;24(1):74. doi: 10.1186/s12909-023-04918-6.

Abstract

BACKGROUND

Dropout and poor academic performance are persistent problems in medical schools in emerging economies. Identifying at-risk students early and knowing the factors that contribute to their success would be useful for designing educational interventions. Educational Data Mining (EDM) methods can identify students at risk of poor academic progress and dropping out. The main goal of this study was to use machine learning models, Artificial Neural Networks (ANN) and Naïve Bayes (NB), to identify first year medical students that succeed academically, using sociodemographic data and academic history.

METHODS

Data from seven cohorts (2011 to 2017) of admitted medical students to the National Autonomous University of Mexico (UNAM) Faculty of Medicine in Mexico City were analysed. Data from 7,976 students (2011 to 2017 cohorts) of the program were included. Information from admission diagnostic exam results, academic history, sociodemographic characteristics and family environment was used. The main dataset included 48 variables. The study followed the general knowledge discovery process: pre-processing, data analysis, and validation. Artificial Neural Networks (ANN) and Naïve Bayes (NB) models were used for data mining analysis.

RESULTS

ANNs models had slightly better performance in accuracy, sensitivity, and specificity. Both models had better sensitivity when classifying regular students and better specificity when classifying irregular students. Of the 25 variables with highest predictive value in the Naïve Bayes model, percentage of correct answers in the diagnostic exam was the best variable.

CONCLUSIONS

Both ANN and Naïve Bayes methods can be useful for predicting medical students' academic achievement in an undergraduate program, based on information of their prior knowledge and socio-demographic factors. Although ANN offered slightly superior results, Naïve Bayes made it possible to obtain an in-depth analysis of how the different variables influenced the model. The use of educational data mining techniques and machine learning classification techniques have potential in medical education.

摘要

背景

在新兴经济体的医学院中,辍学和学业成绩不佳是持续存在的问题。及早发现有风险的学生,并了解导致他们成功的因素,对于设计教育干预措施将是有用的。教育数据挖掘(EDM)方法可以识别学业成绩不佳和辍学风险较高的学生。本研究的主要目的是使用机器学习模型,人工神经网络(ANN)和朴素贝叶斯(NB),使用社会人口统计学数据和学业历史来识别在学业上取得成功的一年级医学生。

方法

分析了来自墨西哥城墨西哥国立自治大学(UNAM)医学院的七个入学医学生队列(2011 年至 2017 年)的数据。该计划的 7976 名学生(2011 年至 2017 年队列)的数据包括在内。使用了入学诊断考试成绩,学业历史,社会人口统计学特征和家庭环境的信息。主要数据集包含 48 个变量。该研究遵循一般知识发现过程:预处理,数据分析和验证。使用人工神经网络(ANN)和朴素贝叶斯(NB)模型进行数据挖掘分析。

结果

ANN 模型在准确性,敏感性和特异性方面的性能略好。两种模型在分类正规学生时均具有更好的敏感性,在分类不规则学生时具有更好的特异性。在朴素贝叶斯模型中具有最高预测值的 25 个变量中,诊断考试的正确答案百分比是最好的变量。

结论

ANN 和朴素贝叶斯方法都可以根据学生先前知识和社会人口统计学因素的信息,用于预测本科生医学学生的学业成绩。尽管 ANN 提供了略高的结果,但朴素贝叶斯可以对不同变量如何影响模型进行深入分析。教育数据挖掘技术和机器学习分类技术在医学教育中有应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3b9/10799512/633587d8ed03/12909_2023_4918_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验