Suppr超能文献

簇状 DNA 损伤如何改变 ds-DNA 的电子性质——GAG、GAG 和 GAG 之间的差异。

How Clustered DNA Damage Can Change the Electronic Properties of ds-DNA-Differences between GAG, GAG, and GAG.

机构信息

DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.

出版信息

Biomolecules. 2023 Mar 11;13(3):517. doi: 10.3390/biom13030517.

Abstract

Every 24 h, roughly 3 × 10 incidences of DNA damage are generated in the human body as a result of intra- or extra-cellular factors. The structure of the formed lesions is identical to that formed during radio- or chemotherapy. Increases in the clustered DNA damage (CDL) level during anticancer treatment have been observed compared to those found in untreated normal tissues. 7,8-dihydro-8-oxo-2'-deoxyguanosine (G) has been recognized as the most common lesion. In these studies, the influence of G, as an isolated (oligo-G) or clustered DNA lesion (oligo-GG), on charge transfer has been analyzed in comparison to native oligo-G. DNA lesion repair depends on the damage recognition step, probably via charge transfer. Here the electronic properties of short ds-oligonucleotides were calculated and analyzed at the M062x/6-31++G** level of theory in a non-equilibrated and equilibrated solvent state. The rate constant of hole and electron transfer according to Marcus' theory was also discussed. These studies elucidated that G constitutes the sink for migrated radical cations. However, in the case of oligo-GG containing a 5'-GAG-3' sequence, the 3'-End G becomes predisposed to electron-hole accumulation contrary to the undamaged GAG fragment. Moreover, it was found that the 5'-End G present in an GAG fragment adopts a higher adiabatic ionization potential than the 2'-deoxyguanosine of an undamaged analog if both ds-oligos are present in a cationic form. Because increases in CDL formation have been observed during radio- or chemotherapy, understanding their role in the above processes can be crucial for the efficiency and safety of medical cancer treatment.

摘要

由于细胞内或细胞外因素,人体每 24 小时大约会产生 3×10 次 DNA 损伤。形成的损伤结构与放射或化学疗法期间形成的损伤结构相同。与未经处理的正常组织相比,在癌症治疗过程中观察到聚集性 DNA 损伤(CDL)水平增加。已经认识到 7,8-二氢-8-氧代-2'-脱氧鸟苷(G)是最常见的损伤。在这些研究中,与天然寡核苷酸 G 相比,分析了 G 作为孤立(寡核苷酸-G)或聚集 DNA 损伤(寡核苷酸-GG)对电荷转移的影响。DNA 损伤修复取决于损伤识别步骤,可能通过电荷转移。在这里,在非平衡和平衡溶剂状态下,在 M062x/6-31++G**理论水平上计算并分析了短 ds-寡核苷酸的电子性质。还根据 Marcus 理论讨论了空穴和电子转移的速率常数。这些研究表明,G 构成迁移自由基阳离子的汇。然而,在含有 5'-GAG-3'序列的寡核苷酸-GG 的情况下,3'-末端 G 倾向于电子-空穴积累,而与未受损的 GAG 片段相反。此外,发现如果两个 ds-寡核苷酸都处于阳离子形式,则存在于 GAG 片段中的 5'-末端 G 比未受损类似物中的 2'-脱氧鸟苷具有更高的绝热电离势。因为在放射或化学疗法期间已经观察到 CDL 形成增加,因此了解它们在上述过程中的作用对于癌症治疗的效率和安全性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b8a/10046028/25acc3804ccd/biomolecules-13-00517-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验