Suppr超能文献

容积调强放疗(VMAT)对头颈部肿瘤进行放射治疗时基于知识的计划(KBP)模型的实施、剂量学评估及治疗验证

Implementation, Dosimetric Assessment, and Treatment Validation of Knowledge-Based Planning (KBP) Models in VMAT Head and Neck Radiation Oncology.

作者信息

Fanou Anna-Maria, Patatoukas Georgios, Chalkia Marina, Kollaros Nikolaos, Kougioumtzopoulou Andromachi, Kouloulias Vassilis, Platoni Kalliopi

机构信息

Medical Physics Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece.

Radiation Therapy Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece.

出版信息

Biomedicines. 2023 Mar 2;11(3):762. doi: 10.3390/biomedicines11030762.

Abstract

The aim of this study was to evaluate knowledge-based treatment planning (KBP) models in terms of their dosimetry and deliverability and to investigate their clinical benefits. Three H&N KBP models were built utilizing RapidPlan™, based on the dose prescription, which is given according to the planning target volume (PTV). The training set for each model consisted of 43 clinically acceptable volumetric modulated arc therapy (VMAT) plans. Model quality was assessed and compared to the delivered treatment plans using the homogeneity index (HI), conformity index (CI), structure dose difference (PTV, organ at risk-OAR), monitor units, MU factor, and complexity index. Model deliverability was assessed through a patient-specific quality assurance (PSQA) gamma index-based analysis. The dosimetric assessment showed better OAR sparing for the RapidPlan™ plans and for the low- and high-risk PTV, and the HI, and CI were comparable between the clinical and RapidPlan™ plans, while for the intermediate-risk PTV, CI was better for clinical plans. The 2D gamma passing rates for RapidPlan™ plans were similar or better than the clinical ones using the 3%/3 mm gamma-index criterion. Monitor units, the MU factors, and complexity indices were found to be comparable between RapidPlan™ and the clinical plans. Knowledge-based treatment plans can be safely adapted into clinical routines, providing improved plan quality in a time efficient way while minimizing user variability.

摘要

本研究的目的是评估基于知识的治疗计划(KBP)模型在剂量测定和可交付性方面的表现,并研究其临床益处。利用RapidPlan™,基于根据计划靶体积(PTV)给出的剂量处方,构建了三种头颈部KBP模型。每个模型的训练集由43个临床可接受的容积调强弧形治疗(VMAT)计划组成。使用均匀性指数(HI)、适形指数(CI)、结构剂量差异(PTV、危及器官-OAR)、监测单位、MU因子和复杂性指数评估模型质量,并与实际交付的治疗计划进行比较。通过基于患者特定质量保证(PSQA)伽马指数的分析评估模型的可交付性。剂量测定评估表明,RapidPlan™计划以及低风险和高风险PTV对危及器官的保护更好,临床计划和RapidPlan™计划之间的HI和CI相当,而对于中等风险PTV,临床计划的CI更好。使用3%/3 mm伽马指数标准时,RapidPlan™计划的二维伽马通过率与临床计划相似或更好。发现RapidPlan™计划与临床计划之间的监测单位、MU因子和复杂性指数相当。基于知识的治疗计划可以安全地应用于临床常规,以高效的方式提高计划质量,同时最大限度地减少用户差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5054/10045933/d83ef78ed76d/biomedicines-11-00762-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验