Kvak Daniel, Chromcová Anna, Hrubý Robert, Janů Eva, Biroš Marek, Pajdaković Marija, Kvaková Karolína, Al-Antari Mugahed A, Polášková Pavlína, Strukov Sergei
Carebot, Ltd., 128 00 Prague, Czech Republic.
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague, Czech Republic.
Diagnostics (Basel). 2023 Mar 9;13(6):1043. doi: 10.3390/diagnostics13061043.
Chest X-ray (CXR) is considered to be the most widely used modality for detecting and monitoring various thoracic findings, including lung carcinoma and other pulmonary lesions. However, X-ray imaging shows particular limitations when detecting primary and secondary tumors and is prone to reading errors due to limited resolution and disagreement between radiologists. To address these issues, we developed a deep-learning-based automatic detection algorithm (DLAD) to automatically detect and localize suspicious lesions on CXRs. Five radiologists were invited to retrospectively evaluate 300 CXR images from a specialized oncology center, and the performance of individual radiologists was subsequently compared with that of DLAD. The proposed DLAD achieved significantly higher sensitivity (0.910 (0.854-0.966)) than that of all assessed radiologists (RAD 10.290 (0.201-0.379), < 0.001, RAD 20.450 (0.352-0.548), < 0.001, RAD 30.670 (0.578-0.762), < 0.001, RAD 40.810 (0.733-0.887), = 0.025, RAD 50.700 (0.610-0.790), < 0.001). The DLAD specificity (0.775 (0.717-0.833)) was significantly lower than for all assessed radiologists (RAD 11.000 (0.984-1.000), < 0.001, RAD 20.970 (0.946-1.000), < 0.001, RAD 30.980 (0.961-1.000), < 0.001, RAD 40.975 (0.953-0.997), < 0.001, RAD 50.995 (0.985-1.000), < 0.001). The study results demonstrate that the proposed DLAD could be utilized as a decision-support system to reduce radiologists' false negative rate.
胸部X光(CXR)被认为是检测和监测各种胸部病症(包括肺癌和其他肺部病变)最广泛使用的方式。然而,X光成像在检测原发性和继发性肿瘤时存在特定局限性,并且由于分辨率有限以及放射科医生之间的意见分歧,容易出现读片错误。为了解决这些问题,我们开发了一种基于深度学习的自动检测算法(DLAD),用于在胸部X光片上自动检测和定位可疑病变。邀请了五位放射科医生对来自一家专业肿瘤中心的300张胸部X光图像进行回顾性评估,随后将每位放射科医生的表现与DLAD的表现进行比较。所提出的DLAD的灵敏度(0.910(0.854 - 0.966))显著高于所有评估的放射科医生(放射科医生1 0.290(0.201 - 0.379),<0.001;放射科医生2 0.450(0.352 - 0.548),<0.001;放射科医生3 0.670(0.578 - 0.762),<0.001;放射科医生4 0.810(0.733 - 0.887),= 0.025;放射科医生5 0.700(0.610 - 0.790),<0.001)。DLAD的特异性(0.775(0.717 - 0.833))显著低于所有评估的放射科医生(放射科医生1 1.000(0.984 - 1.000),<0.001;放射科医生2 0.970(0.946 - 1.000),<0.001;放射科医生3 0.980(0.961 - 1.000),<0.001;放射科医生4 0.975(0.953 - 0.997),<0.001;放射科医生5 0.995(0.985 - 1.000),<0.001)。研究结果表明,所提出的DLAD可作为一种决策支持系统,以降低放射科医生的假阴性率。