Suppr超能文献

基于深度学习结合多种策略的肺结节自动检测与分类

Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies.

机构信息

Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China.

School of Big Data & Software Engineering, Chongqing University, Chongqing 401331, China.

出版信息

Sensors (Basel). 2019 Aug 28;19(17):3722. doi: 10.3390/s19173722.

Abstract

Lung cancer is one of the major causes of cancer-related deaths due to its aggressive nature and delayed detections at advanced stages. Early detection of lung cancer is very important for the survival of an individual, and is a significant challenging problem. Generally, chest radiographs (X-ray) and computed tomography (CT) scans are used initially for the diagnosis of the malignant nodules; however, the possible existence of benign nodules leads to erroneous decisions. At early stages, the benign and the malignant nodules show very close resemblance to each other. In this paper, a novel deep learning-based model with multiple strategies is proposed for the precise diagnosis of the malignant nodules. Due to the recent achievements of deep convolutional neural networks (CNN) in image analysis, we have used two deep three-dimensional (3D) customized mixed link network (CMixNet) architectures for lung nodule detection and classification, respectively. Nodule detections were performed through faster R-CNN on efficiently-learned features from CMixNet and U-Net like encoder-decoder architecture. Classification of the nodules was performed through a gradient boosting machine (GBM) on the learned features from the designed 3D CMixNet structure. To reduce false positives and misdiagnosis results due to different types of errors, the final decision was performed in connection with physiological symptoms and clinical biomarkers. With the advent of the internet of things (IoT) and electro-medical technology, wireless body area networks (WBANs) provide continuous monitoring of patients, which helps in diagnosis of chronic diseases-especially metastatic cancers. The deep learning model for nodules' detection and classification, combined with clinical factors, helps in the reduction of misdiagnosis and false positive (FP) results in early-stage lung cancer diagnosis. The proposed system was evaluated on LIDC-IDRI datasets in the form of sensitivity (94%) and specificity (91%), and better results were obatined compared to the existing methods.

摘要

肺癌是癌症相关死亡的主要原因之一,因其侵袭性强且在晚期阶段检测较晚。早期发现肺癌对个体的生存非常重要,也是一个重大的挑战。通常,胸部 X 光(X 射线)和计算机断层扫描(CT)扫描最初用于恶性结节的诊断;然而,良性结节的存在可能导致错误的决策。在早期阶段,良性和恶性结节彼此非常相似。在本文中,提出了一种基于深度学习的具有多种策略的新型模型,用于恶性结节的精确诊断。由于深度卷积神经网络(CNN)在图像分析方面的最新成果,我们分别使用了两个深度三维(3D)定制混合链接网络(CMixNet)架构进行肺结节检测和分类。通过在高效学习的特征上使用更快的 R-CNN 进行结节检测CMixNet 和 U-Net 类似的编码器-解码器架构。通过在设计的 3D CMixNet 结构中学习到的特征上使用梯度提升机(GBM)进行结节分类。为了减少由于不同类型的错误导致的假阳性和误诊结果,最终的决策是结合生理症状和临床生物标志物进行的。随着物联网(IoT)和电子医疗技术的出现,无线体域网(WBAN)为患者提供了连续监测,有助于诊断慢性病 - 特别是转移性癌症。结节检测和分类的深度学习模型,结合临床因素,有助于减少早期肺癌诊断中的误诊和假阳性(FP)结果。该系统在 LIDC-IDRI 数据集上进行了评估,以敏感性(94%)和特异性(91%)的形式进行评估,与现有方法相比,获得了更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1538/6749467/2eaf0114d15f/sensors-19-03722-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验