Suppr超能文献

使用机器学习技术和虹膜分析预测冠状动脉疾病

Prediction of Coronary Artery Disease Using Machine Learning Techniques with Iris Analysis.

作者信息

Özbilgin Ferdi, Kurnaz Çetin, Aydın Ertan

机构信息

Department of Electrical and Electronic Engineering, Giresun University, Giresun 28200, Turkey.

Department of Electrical and Electronic Engineering, Ondokuz Mayıs University, Samsun 55139, Turkey.

出版信息

Diagnostics (Basel). 2023 Mar 13;13(6):1081. doi: 10.3390/diagnostics13061081.

Abstract

Coronary Artery Disease (CAD) occurs when the coronary vessels become hardened and narrowed, limiting blood flow to the heart muscles. It is the most common type of heart disease and has the highest mortality rate. Early diagnosis of CAD can prevent the disease from progressing and can make treatment easier. Optimal treatment, in addition to the early detection of CAD, can improve the prognosis for these patients. This study proposes a new method for non-invasive diagnosis of CAD using iris images. In this study, iridology, a method of analyzing the iris to diagnose health conditions, was combined with image processing techniques to detect the disease in a total of 198 volunteers, 94 with CAD and 104 without. The iris was transformed into a rectangular format using the integral differential operator and the rubber sheet methods, and the heart region was cropped according to the iris map. Features were extracted using wavelet transform, first-order statistical analysis, a Gray-Level Co-Occurrence Matrix (GLCM), and a Gray Level Run Length Matrix (GLRLM). The model's performance was evaluated based on accuracy, sensitivity, specificity, precision, score, mean, and Area Under the Curve (AUC) metrics. The proposed model has a 93% accuracy rate for predicting CAD using the Support Vector Machine (SVM) classifier. With the proposed method, coronary artery disease can be preliminarily diagnosed by iris analysis without needing electrocardiography, echocardiography, and effort tests. Additionally, the proposed method can be easily used to support telediagnosis applications for coronary artery disease in integrated telemedicine systems.

摘要

冠状动脉疾病(CAD)是指冠状动脉血管变硬变窄,限制了流向心肌的血液供应时发生的疾病。它是最常见的心脏病类型,死亡率最高。CAD的早期诊断可以防止疾病进展,并使治疗更容易。除了早期发现CAD外,最佳治疗还可以改善这些患者的预后。本研究提出了一种利用虹膜图像对CAD进行无创诊断的新方法。在本研究中,虹膜学(一种通过分析虹膜来诊断健康状况的方法)与图像处理技术相结合,对总共198名志愿者进行疾病检测,其中94名患有CAD,104名未患CAD。使用积分微分算子和橡胶片方法将虹膜转换为矩形格式,并根据虹膜图裁剪心脏区域。使用小波变换、一阶统计分析、灰度共生矩阵(GLCM)和灰度游程长度矩阵(GLRLM)提取特征。基于准确率、灵敏度、特异性、精度、分数、均值和曲线下面积(AUC)指标对模型性能进行评估。所提出的模型使用支持向量机(SVM)分类器预测CAD的准确率为93%。采用该方法,无需心电图、超声心动图和负荷试验,通过虹膜分析即可初步诊断冠状动脉疾病。此外,该方法可轻松用于支持综合远程医疗系统中冠状动脉疾病的远程诊断应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcac/10046987/99202dc67f4a/diagnostics-13-01081-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验