Suppr超能文献

使用混合深度机器学习方法对膀胱癌患者的尿路上皮癌进行自动识别和分期

Performing Automatic Identification and Staging of Urothelial Carcinoma in Bladder Cancer Patients Using a Hybrid Deep-Machine Learning Approach.

作者信息

Sarkar Suryadipto, Min Kong, Ikram Waleed, Tatton Ryan W, Riaz Irbaz B, Silva Alvin C, Bryce Alan H, Moore Cassandra, Ho Thai H, Sonpavde Guru, Abdul-Muhsin Haidar M, Singh Parminder, Wu Teresa

机构信息

Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.

Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA.

出版信息

Cancers (Basel). 2023 Mar 8;15(6):1673. doi: 10.3390/cancers15061673.

Abstract

Accurate clinical staging of bladder cancer aids in optimizing the process of clinical decision-making, thereby tailoring the effective treatment and management of patients. While several radiomics approaches have been developed to facilitate the process of clinical diagnosis and staging of bladder cancer using grayscale computed tomography (CT) scans, the performances of these models have been low, with little validation and no clear consensus on specific imaging signatures. We propose a hybrid framework comprising pre-trained deep neural networks for feature extraction, in combination with statistical machine learning techniques for classification, which is capable of performing the following classification tasks: (1) bladder cancer tissue vs. normal tissue, (2) muscle-invasive bladder cancer (MIBC) vs. non-muscle-invasive bladder cancer (NMIBC), and (3) post-treatment changes (PTC) vs. MIBC.

摘要

膀胱癌的准确临床分期有助于优化临床决策过程,从而为患者量身定制有效的治疗和管理方案。虽然已经开发了几种放射组学方法,以利用灰度计算机断层扫描(CT)扫描促进膀胱癌的临床诊断和分期过程,但这些模型的性能较低,验证较少,并且在特定成像特征方面没有明确的共识。我们提出了一个混合框架,该框架包括用于特征提取的预训练深度神经网络,并结合用于分类的统计机器学习技术,能够执行以下分类任务:(1)膀胱癌组织与正常组织,(2)肌层浸润性膀胱癌(MIBC)与非肌层浸润性膀胱癌(NMIBC),以及(3)治疗后变化(PTC)与MIBC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1562/10046500/2cff17499a84/cancers-15-01673-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验