Suppr超能文献

骨转移瘤分割策略的系统评价

Systematic Review of Tumor Segmentation Strategies for Bone Metastases.

作者信息

Paranavithana Iromi R, Stirling David, Ros Montserrat, Field Matthew

机构信息

Faculty of Engineering and Information Sciences, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.

Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.

出版信息

Cancers (Basel). 2023 Mar 14;15(6):1750. doi: 10.3390/cancers15061750.

Abstract

PURPOSE

To investigate the segmentation approaches for bone metastases in differentiating benign from malignant bone lesions and characterizing malignant bone lesions.

METHOD

The literature search was conducted in Scopus, PubMed, IEEE and MedLine, and Web of Science electronic databases following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 77 original articles, 24 review articles, and 1 comparison paper published between January 2010 and March 2022 were included in the review.

RESULTS

The results showed that most studies used neural network-based approaches (58.44%) and CT-based imaging (50.65%) out of 77 original articles. However, the review highlights the lack of a gold standard for tumor boundaries and the need for manual correction of the segmentation output, which largely explains the absence of clinical translation studies. Moreover, only 19 studies (24.67%) specifically mentioned the feasibility of their proposed methods for use in clinical practice.

CONCLUSION

Development of tumor segmentation techniques that combine anatomical information and metabolic activities is encouraging despite not having an optimal tumor segmentation method for all applications or can compensate for all the difficulties built into data limitations.

摘要

目的

研究骨转移瘤的分割方法,以区分良性与恶性骨病变,并对恶性骨病变进行特征描述。

方法

按照系统评价和Meta分析的首选报告项目(PRISMA)指南,在Scopus、PubMed、IEEE和MedLine以及科学网电子数据库中进行文献检索。本综述纳入了2010年1月至2022年3月期间发表的77篇原创文章、24篇综述文章和1篇比较论文。

结果

结果显示,在77篇原创文章中,大多数研究使用基于神经网络的方法(58.44%)和基于CT的成像(50.65%)。然而,该综述强调肿瘤边界缺乏金标准,且分割输出需要人工校正,这在很大程度上解释了临床转化研究的缺乏。此外,只有19项研究(24.67%)特别提到了其提出的方法在临床实践中应用的可行性。

结论

尽管尚未有适用于所有应用的最佳肿瘤分割方法,也无法弥补数据局限性带来的所有困难,但结合解剖信息和代谢活动的肿瘤分割技术的发展令人鼓舞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccca/10046265/6d79f6ef9ca1/cancers-15-01750-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验