Suppr超能文献

机器学习在影像学上鉴别骨恶性肿瘤的应用:一项系统综述。

Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review.

作者信息

Ong Wilson, Zhu Lei, Tan Yi Liang, Teo Ee Chin, Tan Jiong Hao, Kumar Naresh, Vellayappan Balamurugan A, Ooi Beng Chin, Quek Swee Tian, Makmur Andrew, Hallinan James Thomas Patrick Decourcy

机构信息

Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore.

Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore.

出版信息

Cancers (Basel). 2023 Mar 18;15(6):1837. doi: 10.3390/cancers15061837.

Abstract

An accurate diagnosis of bone tumours on imaging is crucial for appropriate and successful treatment. The advent of Artificial intelligence (AI) and machine learning methods to characterize and assess bone tumours on various imaging modalities may assist in the diagnostic workflow. The purpose of this review article is to summarise the most recent evidence for AI techniques using imaging for differentiating benign from malignant lesions, the characterization of various malignant bone lesions, and their potential clinical application. A systematic search through electronic databases (PubMed, MEDLINE, Web of Science, and clinicaltrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 34 articles were retrieved from the databases and the key findings were compiled and summarised. A total of 34 articles reported the use of AI techniques to distinguish between benign vs. malignant bone lesions, of which 12 (35.3%) focused on radiographs, 12 (35.3%) on MRI, 5 (14.7%) on CT and 5 (14.7%) on PET/CT. The overall reported accuracy, sensitivity, and specificity of AI in distinguishing between benign vs. malignant bone lesions ranges from 0.44-0.99, 0.63-1.00, and 0.73-0.96, respectively, with AUCs of 0.73-0.96. In conclusion, the use of AI to discriminate bone lesions on imaging has achieved a relatively good performance in various imaging modalities, with high sensitivity, specificity, and accuracy for distinguishing between benign vs. malignant lesions in several cohort studies. However, further research is necessary to test the clinical performance of these algorithms before they can be facilitated and integrated into routine clinical practice.

摘要

影像学上对骨肿瘤进行准确诊断对于恰当且成功的治疗至关重要。人工智能(AI)和机器学习方法的出现,可用于在各种成像模态下对骨肿瘤进行特征描述和评估,这可能有助于诊断流程。这篇综述文章的目的是总结使用成像技术的AI技术在鉴别良性与恶性病变、各种恶性骨病变的特征描述及其潜在临床应用方面的最新证据。根据系统评价和Meta分析的首选报告项目(PRISMA)指南,通过电子数据库(PubMed、MEDLINE、Web of Science和clinicaltrials.gov)进行了系统检索。从数据库中总共检索到34篇文章,并对关键发现进行了整理和总结。共有34篇文章报道了使用AI技术区分良性与恶性骨病变,其中12篇(35.3%)关注X线片,12篇(35.3%)关注MRI,5篇(14.7%)关注CT,5篇(14.7%)关注PET/CT。AI在区分良性与恶性骨病变方面总体报道的准确性、敏感性和特异性分别为0.44 - 0.99、0.63 - 1.00和0.73 - 0.96,曲线下面积(AUC)为0.73 - 0.96。总之,在各种成像模态下,使用AI鉴别骨病变已取得相对较好的表现,在一些队列研究中对区分良性与恶性病变具有较高的敏感性、特异性和准确性。然而,在这些算法能够得到推广并整合到常规临床实践之前,有必要进行进一步研究以测试其临床性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8c9/10047175/8e57d9cc6342/cancers-15-01837-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验