Suppr超能文献

杂种染色体和性染色体在……的进化。

Heterochiasmy and Sex Chromosome Evolution in .

机构信息

Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.

出版信息

Genes (Basel). 2023 Feb 22;14(3):543. doi: 10.3390/genes14030543.

Abstract

The evolution of a non-recombining sex-specific region is a key step in sex chromosome evolution. Suppression of recombination between the (proto-) X- and Y-chromosomes in male meiosis creates a non-recombining Y-linked region (NRY), while the X-chromosome continues to recombine in females. Lack of recombination in the NRY defines its main properties-genetic degeneration and accumulation of repetitive DNA, making X and Y chromosomes very different from each other. How and why recombination suppression on sex chromosomes evolves remains controversial. A strong difference in recombination rates between the sexes (heterochiasmy) can facilitate or even cause recombination suppression. In the extreme case-complete lack of recombination in the heterogametic sex (achiasmy)-the entire sex-specific chromosome is automatically non-recombining. In this study, I analyse sex-specific recombination rates in a dioecious plant (), which evolved separate sexes and sex chromosomes ~11 million years ago. I reconstruct high-density RNAseq-based genetic maps including over five thousand genic markers for the two sexes separately. The comparison of the male and female maps reveals only modest heterochiasmy across the genome, with the exception of the sex chromosomes, where recombination is suppressed in males. This indicates that heterochiasmy likely played only a minor, if any, role in NRY evolution in , as recombination suppression is specific to NRY rather than to the entire genome in males. Other mechanisms such as structural rearrangements and/or epigenetic modifications were likely involved, and comparative genome analysis and genetic mapping in multiple Silene species will help to shed light on the mechanism(s) of recombination suppression that led to the evolution of sex chromosomes.

摘要

非重组的性染色体特异性区域的进化是性染色体进化的关键步骤。在雄性减数分裂过程中,(原)X 和 Y 染色体之间的重组抑制导致非重组的 Y 连锁区域(NRY)的形成,而 X 染色体在雌性中继续重组。NRY 缺乏重组决定了其主要特性——遗传退化和重复 DNA 的积累,使 X 和 Y 染色体彼此非常不同。性染色体上重组抑制的发生机制和原因仍然存在争议。雌雄之间重组率的强烈差异(异配性)可以促进甚至导致重组抑制。在极端情况下——在异型配子(achiasmy)中完全缺乏重组——整个性染色体特异性区域自动成为非重组的。在这项研究中,我分析了一种雌雄异株植物()中的性染色体特异性重组率,该植物在大约 1100 万年前进化出了独立的性别和性染色体。我分别为两性重建了高密度基于 RNAseq 的遗传图谱,包括超过五千个基因标记。雄性和雌性图谱的比较仅显示出整个基因组中适度的异配性,除了性染色体,其中在雄性中重组受到抑制。这表明异配性在 中 NRY 进化中可能只起了很小的作用,如果有的话,因为在雄性中,重组抑制是特异性的 NRY,而不是整个基因组。其他机制,如结构重排和/或表观遗传修饰,可能也参与其中,对多个丁香属物种的比较基因组分析和遗传图谱将有助于揭示导致性染色体进化的重组抑制机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d04a/10048291/deac0e60fdbb/genes-14-00543-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验