Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France.
Univ. Lille, CNRS, UMR 8198 -Evo-Eco-Paleo, F-59000 Lille, France.
PLoS Biol. 2022 Jul 19;20(7):e3001698. doi: 10.1371/journal.pbio.3001698. eCollection 2022 Jul.
Many organisms have sex chromosomes with large nonrecombining regions that have expanded stepwise, generating "evolutionary strata" of differentiation. The reasons for this remain poorly understood, but the principal hypotheses proposed to date are based on antagonistic selection due to differences between sexes. However, it has proved difficult to obtain empirical evidence of a role for sexually antagonistic selection in extending recombination suppression, and antagonistic selection has been shown to be unlikely to account for the evolutionary strata observed on fungal mating-type chromosomes. We show here, by mathematical modeling and stochastic simulation, that recombination suppression on sex chromosomes and around supergenes can expand under a wide range of parameter values simply because it shelters recessive deleterious mutations, which are ubiquitous in genomes. Permanently heterozygous alleles, such as the male-determining allele in XY systems, protect linked chromosomal inversions against the expression of their recessive mutation load, leading to the successive accumulation of inversions around these alleles without antagonistic selection. Similar results were obtained with models assuming recombination-suppressing mechanisms other than chromosomal inversions and for supergenes other than sex chromosomes, including those without XY-like asymmetry, such as fungal mating-type chromosomes. However, inversions capturing a permanently heterozygous allele were found to be less likely to spread when the mutation load segregating in populations was lower (e.g., under large effective population sizes or low mutation rates). This may explain why sex chromosomes remain homomorphic in some organisms but are highly divergent in others. Here, we model a simple and testable hypothesis explaining the stepwise extensions of recombination suppression on sex chromosomes, mating-type chromosomes, and supergenes in general.
许多生物体都有性染色体,这些性染色体具有较大的非重组区域,这些区域逐步扩张,产生了“分化的进化层次”。造成这种情况的原因仍未被很好地理解,但迄今为止提出的主要假设是基于性别的拮抗选择。然而,事实证明,很难获得性拮抗选择在扩大重组抑制方面的经验证据,并且已经表明,拮抗选择不太可能解释在真菌交配型染色体上观察到的进化层次。我们通过数学建模和随机模拟表明,性染色体和超基因周围的重组抑制可以在广泛的参数值范围内扩展,仅仅是因为它可以保护隐性有害突变,这些突变在基因组中无处不在。永久性杂合等位基因,如 XY 系统中的雄性决定等位基因,可以保护连锁染色体倒位免受其隐性突变负荷的表达,从而在这些等位基因周围连续积累倒位,而无需拮抗选择。在假设除染色体倒位以外的重组抑制机制和除性染色体以外的超基因的模型中,也得到了类似的结果,包括那些没有 XY 样不对称性的超基因,如真菌交配型染色体。然而,当群体中分离的突变负荷较低时(例如,在较大的有效种群大小或较低的突变率下),捕获永久性杂合等位基因的倒位就不太可能传播。这可能解释了为什么在某些生物中性染色体仍然是同形的,但在其他生物中则高度分化。在这里,我们提出了一个简单的、可测试的假设,解释了性染色体、交配型染色体和超基因一般的重组抑制的逐步扩展。