Suppr超能文献

转录组和低亲和力钠转运分析揭示了两种杨树之间的耐盐性差异。

Transcriptome and Low-Affinity Sodium Transport Analysis Reveals Salt Tolerance Variations between Two Poplar Trees.

机构信息

School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, 25003 Leida, Spain.

出版信息

Int J Mol Sci. 2023 Mar 17;24(6):5732. doi: 10.3390/ijms24065732.

Abstract

Salinity stress severely hampers plant growth and productivity. How to improve plants' salt tolerance is an urgent issue. However, the molecular basis of plant resistance to salinity still remains unclear. In this study, we used two poplar species with different salt sensitivities to conduct RNA-sequencing and physiological and pharmacological analyses; the aim is to study the transcriptional profiles and ionic transport characteristics in the roots of the two subjected to salt stress under hydroponic culture conditions. Our results show that numerous genes related to energy metabolism were highly expressed in relative to , which activates vigorous metabolic processes and energy reserves for initiating a set of defense responses when suffering from salinity stress. Moreover, we found the capacity of Na transportation by the high-affinity K+ transporter1;2 (HKT1;2) was superior to that of under salt stress, which enables to efficiently recycle xylem-loaded Na and to maintain shoot K/Na homeostasis. Furthermore, the genes involved in the synthesis of ethylene and abscisic acid were up-regulated in but downregulated in under salt stress. In the gibberellin inactivation and auxin signaling genes with steady high transcriptions, several antioxidant enzymes activities (such as peroxidase [POD], ascorbate peroxidase [APX], and glutathione reductase [GR]), and glycine-betaine content were significantly increased under salt stress. These factors altogether confer a higher resistance to salinity, achieving a more efficient coordination between growth modulation and defense response. Our research provides significant evidence to improve the salt tolerance of crops or woody plants.

摘要

盐胁迫严重抑制植物的生长和生产力。如何提高植物的耐盐性是一个亟待解决的问题。然而,植物耐盐性的分子基础仍不清楚。在这项研究中,我们使用了两种对盐敏感程度不同的杨树物种进行 RNA 测序和生理药理学分析;目的是研究在水培条件下盐胁迫下两种杨树根系的转录谱和离子转运特性。我们的结果表明,与 相比,许多与能量代谢相关的基因在 中高度表达,这激活了剧烈的代谢过程和能量储备,为启动一系列防御反应做好准备,当受到盐胁迫时。此外,我们发现高亲和力 K+转运蛋白 1;2(HKT1;2)的 Na 转运能力优于 在盐胁迫下,这使得 能够有效地回收木质部装载的 Na 并维持地上部 K/Na 平衡。此外,参与乙烯和脱落酸合成的基因在盐胁迫下在 中上调,但在 中下调。在 中,赤霉素失活和生长素信号基因的转录保持稳定,几种抗氧化酶活性(如过氧化物酶[POD]、抗坏血酸过氧化物酶[APX]和谷胱甘肽还原酶[GR])和甘氨酸甜菜碱含量在盐胁迫下显著增加。这些因素共同赋予 更高的耐盐性,在生长调节和防御反应之间实现更有效的协调。我们的研究为提高作物或木本植物的耐盐性提供了重要依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3d5/10058024/d60a25a95a76/ijms-24-05732-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验