Suppr超能文献

用于个性化老年2型糖尿病管理的人体数字孪生模型

Human Digital Twin for Personalized Elderly Type 2 Diabetes Management.

作者信息

Thamotharan Padmapritha, Srinivasan Seshadhri, Kesavadev Jothydev, Krishnan Gopika, Mohan Viswanathan, Seshadhri Subathra, Bekiroglu Korkut, Toffanin Chiara

机构信息

Kalasalingam Academy of Research and Education, Srivilliputhur 626126, Tamil Nadu, India.

TVS-Sensing Solutions Pvt Ltd., Madurai 625122, Tamil Nadu, India.

出版信息

J Clin Med. 2023 Mar 7;12(6):2094. doi: 10.3390/jcm12062094.

Abstract

Managing Elderly type 2 diabetes (E-T2D) is challenging due to geriatric conditions (e.g., co-morbidity, multiple drug intake, etc.), and personalization becomes paramount for precision medicine. This paper presents a human digital twin (HDT) framework to manage E-T2D that exploits various patient-specific data and builds a suite of models exploiting the data for prediction and management to personalize diabetes treatment in E-T2D patients. These models include mathematical and deep-learning ones that capture different patient aspects. Consequently, the HDT virtualizes the patient from different viewpoints using an HDT that mimics the patient and has interfaces to update the virtual models simultaneously from measurements. Using these models the HDT obtains deeper insights about the patient. Further, an adaptive patient model fusing this information and a learning-based model predictive control (LB-MPC) algorithm are proposed. The geriatric conditions are captured as model parameters and constraints while solving the LB-MPC to personalize the insulin infusion for E-T2D management. The HDT is deployed on and illustrated with 15 patients using clinical trials and simulations. Our results show that HDT helps improve the time-in-range from 3-75% to 86-97% and reduces insulin infusion by 14-29%.

摘要

由于老年疾病(如合并症、多种药物摄入等),管理老年2型糖尿病(E-T2D)具有挑战性,因此个性化对于精准医学至关重要。本文提出了一种用于管理E-T2D的人类数字孪生(HDT)框架,该框架利用各种患者特定数据,并构建了一套利用这些数据进行预测和管理的模型,以实现E-T2D患者糖尿病治疗的个性化。这些模型包括捕获患者不同方面的数学模型和深度学习模型。因此,HDT从不同视角对患者进行虚拟化,使用一个模仿患者的HDT,并具有从测量中同时更新虚拟模型的接口。利用这些模型,HDT对患者有了更深入的了解。此外,还提出了一种融合此信息的自适应患者模型和基于学习的模型预测控制(LB-MPC)算法。在求解LB-MPC以实现E-T2D管理的胰岛素输注个性化时,将老年疾病作为模型参数和约束条件。通过临床试验和模拟,HDT在15名患者身上进行了部署和展示。我们的结果表明,HDT有助于将血糖在目标范围内的时间从3 - 75%提高到86 - 97%,并将胰岛素输注量减少14 - 29%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7694/10056736/b7347bbd28c5/jcm-12-02094-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验