Migdadi Lubaba, Sharar Nour, Jafar Hanan, Telfah Ahmad, Hergenröder Roland, Wöhler Christian
Image Analysis Group, TU Dortmund, 44227 Dortmund, Germany.
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany.
Metabolites. 2023 Feb 27;13(3):352. doi: 10.3390/metabo13030352.
The ability to monitor the dynamics of stem cell differentiation is a major goal for understanding biochemical evolution pathways. Automating the process of metabolic profiling using 2D NMR helps us to understand the various differentiation behaviors of stem cells, and therefore sheds light on the cellular pathways of development, and enhances our understanding of best practices for in vitro differentiation to guide cellular therapies. In this work, the dynamic evolution of adipose-tissue-derived human Mesenchymal stem cells (AT-derived hMSCs) after fourteen days of cultivation, adipocyte and osteocyte differentiation, was inspected based on H-H TOCSY using machine learning. Multi-class classification in addition to the novelty detection of metabolites was established based on a control hMSC sample after four days' cultivation and we successively detected the changes of metabolites in differentiated MSCs following a set of H-H TOCSY experiments. The classifiers Kernel Null Foley-Sammon Transform and Kernel Density Estimation achieved a total classification error between 0% and 3.6% and false positive and false negative rates of 0%. This approach was successfully able to automatically reveal metabolic changes that accompanied MSC cellular evolution starting from their undifferentiated status to their prolonged cultivation and differentiation into adipocytes and osteocytes using machine learning supporting the research in the field of metabolic pathways of stem cell differentiation.
监测干细胞分化动态的能力是理解生化进化途径的主要目标。使用二维核磁共振(2D NMR)实现代谢谱分析过程的自动化,有助于我们了解干细胞的各种分化行为,从而揭示细胞发育途径,并加深我们对体外分化最佳实践的理解,以指导细胞治疗。在这项工作中,基于H-H TOCSY并利用机器学习,对培养十四天后的脂肪组织来源的人骨髓间充质干细胞(AT来源的hMSCs)、脂肪细胞和骨细胞分化的动态演变进行了检测。在培养四天后的对照hMSC样本基础上,建立了除代谢物新颖性检测之外的多类分类方法,并通过一系列H-H TOCSY实验相继检测了分化的间充质干细胞中代谢物的变化。分类器核零Foley-Sammon变换和核密度估计的总分类误差在0%至3.6%之间,假阳性率和假阴性率均为0%。这种方法成功地利用机器学习自动揭示了从间充质干细胞未分化状态开始,经过长期培养并分化为脂肪细胞和骨细胞的过程中伴随其细胞进化的代谢变化,为干细胞分化代谢途径领域的研究提供了支持。