Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstraße 36, 10623 Berlin, Germany.
Leibniz-Institut für Analytische Wissenschaften - ISAS e.V., Department Interface Analytics, Schwarzschildstraße 8, 12489 Berlin, Germany.
Nanoscale. 2023 Apr 13;15(15):7077-7085. doi: 10.1039/d2nr05529e.
The luminescence of InGaN nanowires (NWs) is frequently reported with large red-shifts as compared to the theoretical value expected from the average In content. Both compositional fluctuations and radial built-in fields were considered accountable for this effect, depending on the size, structure, composition, and surrounding medium of the NWs. In the present work, the emission properties of InGaN/GaN NWs grown by plasma-assisted molecular beam epitaxy are investigated in a comprehensive study combining ultraviolet-Raman and photoluminescence spectroscopy (PL) on vertical arrays, polarization-dependent PL on bundles of a few NWs, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and calculations of the band profiles. The roles of inhomogeneous In distribution and radial fields in the context of optical emission properties are addressed. The radial built-in fields are found to be modest, with a maximum surface band bending below 350 meV. On the other hand, variations in the local In content have been observed that give rise to potential fluctuations whose impact on the emission properties is shown to prevail over band-bending effects. Two luminescence bands with large positive and moderate negative polarization ratios of ≈+80% and ≤-60%, respectively, were observed. The red-shift in the luminescence is associated with In-rich inclusions in the NWs due to thermodynamic decomposition during growth. The negative polarization anisotropy is suggested to result from spontaneously formed superlattices in the In-rich regions of the NWs. The NWs show a preferred orthogonal absorption due to the dielectric boundary conditions and highlight the extreme sensitivity of these structures towards light polarization.
氮化铟镓(InGaN)纳米线(NWs)的发光通常比理论上预期的平均铟含量的红移大得多。根据 NWs 的尺寸、结构、组成和周围介质的不同,组成波动和径向内置场都被认为是造成这种效应的原因。在本工作中,通过等离子体辅助分子束外延生长的 InGaN/GaN NWs 的发射特性进行了综合研究,包括垂直阵列的紫外拉曼和光致发光光谱(PL)、几束 NWs 的偏振相关 PL、扫描透射电子显微镜、能量色散 X 射线光谱以及能带结构的计算。在光学发射特性的背景下,研究了非均匀 In 分布和径向场的作用。发现径向内置场适中,最大表面能带弯曲低于 350 meV。另一方面,观察到局部 In 含量的变化,导致潜在的波动,其对发射特性的影响被证明超过了能带弯曲效应。观察到两个发光带,具有较大的正和中等的负偏振比,分别约为+80%和≤-60%。发光的红移与 NWs 中由于生长过程中的热力学分解而导致的富 In 夹杂物有关。负的偏振各向异性被认为是由于 NWs 中富 In 区域中自发形成的超晶格引起的。由于介电边界条件,NWs 表现出正交吸收的偏好,并突出了这些结构对光偏振的极端敏感性。