Suppr超能文献

实现钠离子电池的卓越的层状结构电化学和高度可逆的全电压范围氧阴离子化学。

Enabling an Excellent Ordering-Enhanced Electrochemistry and a Highly Reversible Whole-Voltage-Range Oxygen Anionic Chemistry for Sodium-Ion Batteries.

机构信息

Neutron Scattering Laboratory, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, People's Republic of China.

School of Physics, Peking University, Beijing 100871, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 12;15(14):17801-17813. doi: 10.1021/acsami.2c22670. Epub 2023 Mar 29.

Abstract

Though considerable Mg-doped layered cathodes have been exploited, some new differences relative to previous reports can be concluded by doping a heavy dose of Mg via two rational strategies. Unlike the common unit cell of the 6/ group by X-ray diffraction, neutron diffraction reveals a large supercell of the 6 group and enhanced ordering for NaMg[NiMgMn]O with Mg occupying both the Na and Mn sites. Compared with only one obvious voltage plateau of Na[NiMn]O (NNM), NaMg[NiMgMn]O (NMNMM) shows more severe voltage plateaus but with excellent electrochemical performance. Na[MgMn]O (NMM) with Mg only occupying the Ni site displays a highly reversible whole-voltage-range oxygen redox chemistry and smooth voltage curves without any voltage hysteresis. Cationic Ni/Ni couples are responsible for the charge compensations of NNM and NMNMM, while only the oxygen anionic reaction accounts for the capacity of NMM between 2.5 and 4.3 V. Interestingly, the Mn/Mn pair contributes all capacity for all cathodes between 1.5 and 2.5 V. All cathodes undergo a double-phase mechanism: an irreversible P2-O2 phase transition for NNM, an enhanced reversible P2-O2 phase transition for NMNMM, and a highly reversible P2-OP4 phase transition for NMM. In addition, the designed cathodes display excellent rate capability and long-term cycling stability but with a large difference in the various voltage ranges of 2.5-4.3 and 1.5-2.5 V, respectively. This work provides a good understanding of ion doping and some new insights into exploiting high-performance materials.

摘要

尽管已经开发出了相当数量的镁掺杂层状阴极,但通过两种合理的策略掺杂大剂量镁,可以得出一些与之前报道不同的新差异。与 X 射线衍射的 6/组常见单胞不同,中子衍射揭示了 6 组的大超胞和增强的 NaMg[NiMgMn]O 有序性,其中镁占据了钠和锰的位置。与仅一个明显的 Na[NiMn]O(NNM)电压平台相比,NaMg[NiMgMn]O(NMNMM)显示出更严重的电压平台,但具有优异的电化学性能。仅镁占据镍位的 Na[MgMn]O(NMM)显示出高度可逆的全电压范围氧氧化还原化学和光滑的电压曲线,没有任何电压滞后。阳离子 Ni/Ni 对负责 NNM 和 NMNMM 的电荷补偿,而只有氧阴离子反应在 2.5 和 4.3 V 之间占 NMM 的容量。有趣的是,Mn/Mn 对在 1.5 和 2.5 V 之间为所有阴极贡献了全部容量。所有阴极都经历了双相机制:NNM 的不可逆 P2-O2 相变,NMNMM 的增强可逆 P2-O2 相变,以及 NMM 的高度可逆 P2-OP4 相变。此外,设计的阴极显示出优异的倍率性能和长期循环稳定性,但在 2.5-4.3 和 1.5-2.5 V 的各个电压范围内存在很大差异。这项工作提供了对离子掺杂的更好理解,并为开发高性能材料提供了一些新的见解。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验