Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
Takis Biotech, Rome, Italy.
Arch Virol. 2023 Mar 29;168(4):124. doi: 10.1007/s00705-023-05746-1.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 760 million cases and over 6.8 million deaths as of March 2023. Vaccination has been the main strategy used to contain the spread of the virus and to prevent hospitalizations and deaths. Currently, two mRNA-based vaccines and one adenovirus-vectored vaccine have been approved and are available for use in the U.S. population. The versatility, low cost, and rapid production of DNA vaccines provide important advantages over other platforms. Additionally, DNA vaccines efficiently induce both B- and T-cell responses by expressing the antigen within transfected host cells, and the antigen, after being processed into peptides, can associate with MHC class I or II of antigen-presenting cells (APCs) to stimulate different T cell responses. However, the efficiency of DNA vaccination needs to be improved for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been used successfully in the field of veterinary oncology, resulting in high rates of response after electrochemotherapy. Here, we evaluate the safety, immunogenicity, and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects. Additionally, the vaccine elicited neutralizing antibodies and T cell responses on day 42 post-immunization using a low dose of the linear DNA construct in a prime-boost regimen. Most importantly, vaccination significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)是导致 2019 年冠状病毒病(COVID-19)的病原体,截至 2023 年 3 月,已导致超过 7.6 亿例病例和超过 680 万人死亡。疫苗接种是控制病毒传播、预防住院和死亡的主要策略。目前,两种基于 mRNA 的疫苗和一种腺病毒载体疫苗已在美国获得批准并可使用。DNA 疫苗具有多功能性、低成本和快速生产的优势,与其他平台相比具有重要优势。此外,DNA 疫苗通过在转染的宿主细胞内表达抗原来有效诱导 B 细胞和 T 细胞反应,并且抗原在被加工成肽后可以与抗原呈递细胞(APC)的 MHC 类 I 或 II 结合,以刺激不同的 T 细胞反应。然而,DNA 疫苗的效率需要提高才能在人类中使用。重要的是,体内 DNA 递送与电穿孔(EP)的结合已成功应用于兽医肿瘤学领域,在电化学治疗后产生了高反应率。在这里,我们评估了一种新型线性 SARS-CoV-2 DNA 疫苗候选物通过肌肉内注射后电穿孔(Vet-ePorator™)在雪貂中的安全性、免疫原性和保护效力。线性 SARS-CoV-2 DNA 疫苗候选物没有引起意外的副作用。此外,在免疫后第 42 天,使用低剂量的线性 DNA 构建体进行初免-加强免疫方案,疫苗引发了中和抗体和 T 细胞反应。最重要的是,疫苗接种显著减少了 SARS-CoV-2 通过口腔和鼻腔分泌物在雪貂模型中的传染性脱落。