Jin Shoufeng, Yang Zixuan, Królczykg Grzegorz, Liu Xinying, Gardoni Paolo, Li Zhixiong
College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710600, China.
Faculty of Mechanical Engineering, Opole University of Technology, Opole 45-758, Poland.
Waste Manag. 2023 May 1;162:123-130. doi: 10.1016/j.wasman.2023.02.014. Epub 2023 Mar 28.
Waste recycling is a critical issue for environment pollution management while garbage classification determines the recycling efficiency. In order to reduce labor costs and increase garbage classification capacity, a machine vision system is established based on the deep learning and transfer learning. In this new method, an improved MobileNetV2 deep learning model is proposed for garbage detection and classification, where the attention mechanism is introduced into the first and last convolution layers of the MobileNetV2 model to improve the recognition accuracy and the transfer learning uses a set of pre-trained weight parameters to extend the model generalization ability. In addition, the principal component analysis (PCA) is employed to reduce the dimension of the last fully connected layer to enable real-time operation of the developed model on an edge device. The experimental results demonstrate that the proposed method generates 90.7 % of the garbage classification accuracy on the "Huawei Cloud" datasets, the average inference time is 600 ms on the raspberry Pi 4B microprocessor, and the model volume compression is 30.1 % of the basic MobileNetV2 model. Furthermore, a garbage sorting porotype is designed and manufactured to evaluate the performance of the proposed MobileNetV2 model on the real-world garbage identification, which turns out that the average garbage classification accuracy is 89.26 %. Hence, the developed garbage sorting porotype can be used a effective tool for sustainable waste recycling.
垃圾回收是环境污染管理的关键问题,而垃圾分类决定了回收效率。为了降低劳动力成本并提高垃圾分类能力,基于深度学习和迁移学习建立了一个机器视觉系统。在这种新方法中,提出了一种改进的MobileNetV2深度学习模型用于垃圾检测和分类,其中在MobileNetV2模型的第一个和最后一个卷积层中引入了注意力机制以提高识别准确率,并且迁移学习使用一组预训练的权重参数来扩展模型的泛化能力。此外,采用主成分分析(PCA)来降低最后一个全连接层的维度,以使所开发的模型能够在边缘设备上实时运行。实验结果表明,所提出的方法在“华为云”数据集上产生了90.7%的垃圾分类准确率,在树莓派4B微处理器上的平均推理时间为600毫秒,并且模型体积压缩为基本MobileNetV2模型的30.1%。此外,设计并制造了一个垃圾分类原型,以评估所提出的MobileNetV2模型在实际垃圾识别中的性能,结果表明平均垃圾分类准确率为89.26%。因此,所开发的垃圾分类原型可以用作可持续垃圾回收的有效工具。