Suppr超能文献

基于人工智能的自动垃圾分类技术的系统综述

A Systematic Review of AI-Based Techniques for Automated Waste Classification.

作者信息

Fotovvatikhah Farnaz, Ahmedy Ismail, Noor Rafidah Md, Munir Muhammad Umair

机构信息

Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

出版信息

Sensors (Basel). 2025 May 18;25(10):3181. doi: 10.3390/s25103181.

Abstract

Waste classification is a critical step in waste management that is time-consuming and necessitates automation to replace traditional approaches. Recently, machine learning (ML) and deep learning (DL) have gained attention from researchers seeking to automate waste classification by providing alternative computational techniques to address various waste-related challenges. Significant research on waste classification has emerged in recent years, reflecting the growing focus on this domain. This systematic literature review (SLR) explores the role of artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), in automating waste classification. Using Kitchenham's and PRISMA guidelines, we analyze over 97 studies, categorizing AI-based techniques into ML-based, DL-based, and hybrid models. We further present an in-depth review of over fifteen publicly available waste classification datasets, highlighting key limitations such as dataset imbalance, real-world variability, and standardization issues. Our analysis reveals that deep learning and hybrid approaches dominate the current research landscape, with CNN-based architecture and transfer learning techniques showing particularly promising results. To guide future advancements, this study also proposes a structured roadmap that organizes challenges and opportunities into short-, mid-, and long-term priorities. The roadmap integrates insights on model accuracy, system efficiency, and sustainability goals to support the practical deployment of AI-powered waste classification systems. This work provides researchers with a comprehensive understanding of the state-of-the-art in ML and DL for waste classification and offers insights into areas that remain unexplored.

摘要

垃圾分类是废物管理中的关键一步,既耗时又需要自动化来取代传统方法。最近,机器学习(ML)和深度学习(DL)引起了研究人员的关注,他们试图通过提供替代计算技术来应对各种与废物相关的挑战,从而实现垃圾分类自动化。近年来,关于垃圾分类的重要研究不断涌现,这反映出该领域日益受到关注。本系统文献综述(SLR)探讨了人工智能(AI),特别是机器学习(ML)和深度学习(DL)在垃圾分类自动化中的作用。我们依据Kitchenham和PRISMA指南,分析了97项以上的研究,将基于人工智能的技术分为基于机器学习的、基于深度学习的和混合模型。我们还对十五个以上公开可用的垃圾分类数据集进行了深入综述,突出了诸如数据集不平衡、现实世界的变异性和标准化问题等关键限制。我们的分析表明,深度学习和混合方法在当前研究领域占据主导地位,基于卷积神经网络(CNN)的架构和迁移学习技术显示出特别有前景的结果。为指导未来的进展,本研究还提出了一个结构化路线图,将挑战和机遇组织成短期、中期和长期的优先事项。该路线图整合了关于模型准确性、系统效率和可持续性目标的见解,以支持人工智能驱动的垃圾分类系统的实际部署。这项工作使研究人员全面了解了用于垃圾分类的机器学习和深度学习的最新技术,并提供了对仍未探索领域的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验