Suppr超能文献

计算建模对经导管左心耳封堵效率和结局的影响。

Impact of Computational Modeling on Transcatheter Left Atrial Appendage Closure Efficiency and Outcomes.

机构信息

Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Bordeaux University Hospital, Fondation Bordeaux Université, Bordeaux, France.

出版信息

JACC Cardiovasc Interv. 2023 Mar 27;16(6):655-666. doi: 10.1016/j.jcin.2023.01.008. Epub 2023 Feb 22.

Abstract

BACKGROUND

When performing transcatheter left atrial appendage (LAA) closure, peridevice leaks and device-related thrombus (DRT) have been associated with worse clinical outcomes-hence, their risk should be mitigated.

OBJECTIVES

The authors sought to assess whether use of preprocedural computational modeling impacts procedural efficiency and outcomes of transcatheter LAA closure.

METHODS

The PREDICT-LAA trial (NCT04180605) is a prospective, multicenter, randomized trial in which 200 patients were 1:1 randomized to standard planning vs cardiac computed tomography (CT) simulation-based planning of LAA closure with Amplatzer Amulet. The artificial intelligence-enabled CT-based anatomical analyses and computer simulations were provided by FEops (Belgium).

RESULTS

All patients had a preprocedural cardiac CT, 197 patients underwent LAA closure, and 181 of these patients had a postprocedural CT scan (standard, n = 91; CT + simulation, n = 90). The composite primary endpoint, defined as contrast leakage distal of the Amulet lobe and/or presence of DRT, was observed in 41.8% in the standard group vs 28.9% in the CT + simulation group (relative risk [RR]: 0.69; 95% CI: 0.46-1.04; P = 0.08). Complete LAA closure with no residual leak and no disc retraction into the LAA was observed in 44.0% vs 61.1%, respectively (RR: 1.44; 95% CI: 1.05-1.98; P = 0.03). In addition, use of computer simulations resulted in improved procedural efficiency with use of fewer Amulet devices (103 vs 118; P < 0.001) and fewer device repositionings (104 vs 195; P < 0.001) in the CT + simulation group.

CONCLUSIONS

The PREDICT-LAA trial demonstrates the possible added value of artificial intelligence-enabled, CT-based computational modeling when planning for transcatheter LAA closure, leading to improved procedural efficiency and a trend toward better procedural outcomes.

摘要

背景

在进行经导管左心耳(LAA)封堵术时,器械周围漏和器械相关血栓(DRT)与较差的临床结局相关,因此需要降低其风险。

目的

作者旨在评估经导管 LAA 封堵术前使用计算模型是否会影响手术效率和结局。

方法

PREDICT-LAA 试验(NCT04180605)是一项前瞻性、多中心、随机试验,200 例患者按 1:1 随机分为标准规划组和 Amplatzer Amulet 左心耳封堵的心脏计算机断层扫描(CT)模拟基础规划组。人工智能支持的 CT 解剖分析和计算机模拟由 FEops(比利时)提供。

结果

所有患者均进行了术前心脏 CT 检查,197 例患者进行了 LAA 封堵术,其中 181 例患者进行了术后 CT 扫描(标准组 91 例;CT+模拟组 90 例)。标准组的复合主要终点定义为 Amulet 叶远端的对比渗漏和/或存在 DRT,发生率为 41.8%,而 CT+模拟组为 28.9%(相对风险 [RR]:0.69;95%CI:0.46-1.04;P=0.08)。分别有 44.0%和 61.1%的患者实现了完全 LAA 封堵,无残余漏和无器械盘回缩入 LAA(RR:1.44;95%CI:1.05-1.98;P=0.03)。此外,与标准组相比,计算机模拟的使用提高了手术效率,Amulet 装置的使用减少了(103 个 vs 118 个;P<0.001),器械重新定位的次数减少了(104 次 vs 195 次;P<0.001)。

结论

PREDICT-LAA 试验表明,人工智能支持的 CT 计算模型在经导管 LAA 封堵术的规划中具有潜在的附加价值,可提高手术效率,并使手术结局有改善的趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验