Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
Bordeaux University Hospital, Fondation Bordeaux Université, Bordeaux, France.
JACC Cardiovasc Interv. 2023 Mar 27;16(6):655-666. doi: 10.1016/j.jcin.2023.01.008. Epub 2023 Feb 22.
When performing transcatheter left atrial appendage (LAA) closure, peridevice leaks and device-related thrombus (DRT) have been associated with worse clinical outcomes-hence, their risk should be mitigated.
The authors sought to assess whether use of preprocedural computational modeling impacts procedural efficiency and outcomes of transcatheter LAA closure.
The PREDICT-LAA trial (NCT04180605) is a prospective, multicenter, randomized trial in which 200 patients were 1:1 randomized to standard planning vs cardiac computed tomography (CT) simulation-based planning of LAA closure with Amplatzer Amulet. The artificial intelligence-enabled CT-based anatomical analyses and computer simulations were provided by FEops (Belgium).
All patients had a preprocedural cardiac CT, 197 patients underwent LAA closure, and 181 of these patients had a postprocedural CT scan (standard, n = 91; CT + simulation, n = 90). The composite primary endpoint, defined as contrast leakage distal of the Amulet lobe and/or presence of DRT, was observed in 41.8% in the standard group vs 28.9% in the CT + simulation group (relative risk [RR]: 0.69; 95% CI: 0.46-1.04; P = 0.08). Complete LAA closure with no residual leak and no disc retraction into the LAA was observed in 44.0% vs 61.1%, respectively (RR: 1.44; 95% CI: 1.05-1.98; P = 0.03). In addition, use of computer simulations resulted in improved procedural efficiency with use of fewer Amulet devices (103 vs 118; P < 0.001) and fewer device repositionings (104 vs 195; P < 0.001) in the CT + simulation group.
The PREDICT-LAA trial demonstrates the possible added value of artificial intelligence-enabled, CT-based computational modeling when planning for transcatheter LAA closure, leading to improved procedural efficiency and a trend toward better procedural outcomes.
在进行经导管左心耳(LAA)封堵术时,器械周围漏和器械相关血栓(DRT)与较差的临床结局相关,因此需要降低其风险。
作者旨在评估经导管 LAA 封堵术前使用计算模型是否会影响手术效率和结局。
PREDICT-LAA 试验(NCT04180605)是一项前瞻性、多中心、随机试验,200 例患者按 1:1 随机分为标准规划组和 Amplatzer Amulet 左心耳封堵的心脏计算机断层扫描(CT)模拟基础规划组。人工智能支持的 CT 解剖分析和计算机模拟由 FEops(比利时)提供。
所有患者均进行了术前心脏 CT 检查,197 例患者进行了 LAA 封堵术,其中 181 例患者进行了术后 CT 扫描(标准组 91 例;CT+模拟组 90 例)。标准组的复合主要终点定义为 Amulet 叶远端的对比渗漏和/或存在 DRT,发生率为 41.8%,而 CT+模拟组为 28.9%(相对风险 [RR]:0.69;95%CI:0.46-1.04;P=0.08)。分别有 44.0%和 61.1%的患者实现了完全 LAA 封堵,无残余漏和无器械盘回缩入 LAA(RR:1.44;95%CI:1.05-1.98;P=0.03)。此外,与标准组相比,计算机模拟的使用提高了手术效率,Amulet 装置的使用减少了(103 个 vs 118 个;P<0.001),器械重新定位的次数减少了(104 次 vs 195 次;P<0.001)。
PREDICT-LAA 试验表明,人工智能支持的 CT 计算模型在经导管 LAA 封堵术的规划中具有潜在的附加价值,可提高手术效率,并使手术结局有改善的趋势。