Suppr超能文献

ARTD-Net:基于无锚的可回收垃圾检测网络,使用无边模块。

ARTD-Net: Anchor-Free Based Recyclable Trash Detection Net Using Edgeless Module.

机构信息

Visual Information Processing, Korea University, Seoul 02841, Republic of Korea.

Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.

出版信息

Sensors (Basel). 2023 Mar 7;23(6):2907. doi: 10.3390/s23062907.

Abstract

Due to the sharp increase in household waste, its separate collection is essential in order to reduce the huge amount of household waste, since it is difficult to recycle trash without separate collection. However, since it is costly and time-consuming to separate trash manually, it is crucial to develop an automatic system for separate collection using deep learning and computer vision. In this paper, we propose two Anchor-free-based Recyclable Trash Detection Networks (ARTD-Net) which can recognize overlapped multiple wastes of different types efficiently by using edgeless modules: ARTD-Net1 and ARTD-Net2. The former is an anchor-free based one-stage deep learning model which consists of three modules: centralized feature extraction, multiscale feature extraction and prediction. The centralized feature extraction module in backbone architecture focuses on extracting features around the center of the input image to improve detection accuracy. The multiscale feature extraction module provides feature maps of different scales through bottom-up and top-down pathways. The prediction module improves classification accuracy of multiple objects based on edge weights adjustments for each instance. The latter is an anchor-free based multi-stage deep learning model which can efficiently finds each of waste regions by additionally exploiting region proposal network and RoIAlign. It sequentially performs classification and regression to improve accuracy. Therefore, ARTD-Net2 is more accurate than ARTD-Net1, while ARTD-Net1 is faster than ARTD-Net2. We shall show that our proposed ARTD-Net1 and ARTD-Net2 methods achieve competitive performance in mean average precision and F1 score compared to other deep learning models. The existing datasets have several problems that do not deal with the important class of wastes produced commonly in the real world, and they also do not consider the complex arrangement of multiple wastes with different types. Moreover, most of the existing datasets have an insufficient number of images with low resolution. We shall present a new recyclables dataset which is composed of a large number of high-resolution waste images with additional essential classes. We shall show that waste detection performance is improved by providing various images with the complex arrangement of overlapped multiple wastes with different types.

摘要

由于家庭垃圾的急剧增加,为了减少大量的家庭垃圾,对其进行单独收集是必不可少的,因为如果不进行垃圾分类,垃圾很难回收利用。然而,由于手动垃圾分类既昂贵又耗时,因此开发一种使用深度学习和计算机视觉进行垃圾分类的自动系统至关重要。在本文中,我们提出了两种基于无锚点的可回收垃圾检测网络(ARTD-Net),它们可以通过使用无边模块高效识别不同类型的重叠多个垃圾:ARTD-Net1 和 ARTD-Net2。前者是一种基于无锚点的一阶段深度学习模型,由三个模块组成:集中特征提取、多尺度特征提取和预测。骨干架构中的集中特征提取模块专注于提取输入图像中心周围的特征,以提高检测精度。多尺度特征提取模块通过自下而上和自上而下的路径提供不同尺度的特征图。预测模块通过对每个实例的边缘权重调整来提高多目标的分类精度。后者是一种基于无锚点的多阶段深度学习模型,它可以通过额外利用区域提议网络和 RoIAlign 来有效地找到每个垃圾区域。它依次执行分类和回归以提高准确性。因此,ARTD-Net2 比 ARTD-Net1 更准确,而 ARTD-Net1 比 ARTD-Net2 更快。我们将表明,与其他深度学习模型相比,我们提出的 ARTD-Net1 和 ARTD-Net2 方法在平均精度和 F1 得分方面具有竞争力。现有的数据集存在一些问题,无法处理现实世界中常见的重要垃圾类别,也没有考虑到不同类型的多个垃圾的复杂排列。此外,现有的大多数数据集都存在图像数量不足、分辨率低的问题。我们将提出一个新的可回收物数据集,该数据集由大量具有额外重要类别的高分辨率垃圾图像组成。我们将展示,通过提供具有不同类型重叠多个垃圾复杂排列的各种图像,可以提高垃圾检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a113/10055726/766ce61902c2/sensors-23-02907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验