Lin Hualing, Zhang Xue, Yu Junchen, Xiang Ji, Shen Hui-Liang
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China.
Sensors (Basel). 2024 Oct 4;24(19):6434. doi: 10.3390/s24196434.
Sorting recyclable trash is critical to reducing energy consumption and mitigating environmental pollution. Currently, trash sorting heavily relies on manpower. Computer vision technology enables automated trash sorting. However, existing trash image classification datasets contain a large number of images without backgrounds. Moreover, the models are vulnerable to background interference when categorizing images with complex backgrounds. In this work, we provide a recyclable trash dataset that supports model training and design a model specifically for trash sorting. Firstly, we introduce the TrashIVL dataset, an image dataset for recyclable trash sorting encompassing five classes (TrashIVL-5). All images are collected from public trash datasets, and the original images were captured by RGB imaging sensors, containing trash items with real-life backgrounds. To achieve refined recycling and improve sorting efficiency, the TrashIVL dataset can be further categorized into 12 classes (TrashIVL-12). Secondly, we propose the integrated parallel attention module (IPAM). Considering the susceptibility of sensor-based systems to background interference in real-world trash sorting scenarios, our IPAM is specifically designed to focus on the essential features of trash images from both channel and spatial perspectives. It can be inserted into convolutional neural networks (CNNs) as a plug-and-play module. We have constructed a recyclable trash sorting network building upon the IPAM, which produces an acuracy of 97.42% on TrashIVL-5 and 94.08% on TrashIVL-12. Our work is an effective attempt of computer vision in recyclable trash sorting. It makes a positive contribution to environmental protection and sustainable development.
分类回收垃圾对于降低能源消耗和减轻环境污染至关重要。目前,垃圾分类严重依赖人力。计算机视觉技术实现了垃圾自动分类。然而,现有的垃圾图像分类数据集包含大量无背景的图像。此外,在对具有复杂背景的图像进行分类时,模型容易受到背景干扰。在这项工作中,我们提供了一个支持模型训练的可回收垃圾数据集,并专门设计了一个用于垃圾分类的模型。首先,我们介绍了TrashIVL数据集,这是一个用于可回收垃圾分类的图像数据集,涵盖五个类别(TrashIVL-5)。所有图像均从公共垃圾数据集中收集,原始图像由RGB成像传感器拍摄,包含具有真实生活背景的垃圾物品。为了实现精细回收并提高分类效率,TrashIVL数据集可进一步细分为12个类别(TrashIVL-12)。其次,我们提出了集成并行注意力模块(IPAM)。考虑到基于传感器的系统在现实世界垃圾分类场景中对背景干扰的敏感性,我们的IPAM专门设计用于从通道和空间两个角度关注垃圾图像的关键特征。它可以作为即插即用模块插入卷积神经网络(CNN)中。我们基于IPAM构建了一个可回收垃圾分类网络,该网络在TrashIVL-5上的准确率为97.42%,在TrashIVL-12上的准确率为94.08%。我们的工作是计算机视觉在可回收垃圾分类方面的一次有效尝试。它为环境保护和可持续发展做出了积极贡献。