Suppr超能文献

一种新型物联网医疗监测框架和基于改进灰狼优化算法的深度卷积神经网络模型,用于肺癌的早期诊断。

A Novel IoT-Enabled Healthcare Monitoring Framework and Improved Grey Wolf Optimization Algorithm-Based Deep Convolution Neural Network Model for Early Diagnosis of Lung Cancer.

机构信息

Department of Computer Science, College of Science and Arts, Najran University, Sharurah 68341, Saudi Arabia.

Department of Computer Science and Engineering, Sejong University, Seoul 30019, Republic of Korea.

出版信息

Sensors (Basel). 2023 Mar 8;23(6):2932. doi: 10.3390/s23062932.

Abstract

Lung cancer is a high-risk disease that causes mortality worldwide; nevertheless, lung nodules are the main manifestation that can help to diagnose lung cancer at an early stage, lowering the workload of radiologists and boosting the rate of diagnosis. Artificial intelligence-based neural networks are promising technologies for automatically detecting lung nodules employing patient monitoring data acquired from sensor technology through an Internet-of-Things (IoT)-based patient monitoring system. However, the standard neural networks rely on manually acquired features, which reduces the effectiveness of detection. In this paper, we provide a novel IoT-enabled healthcare monitoring platform and an improved grey-wolf optimization (IGWO)-based deep convulution neural network (DCNN) model for lung cancer detection. The Tasmanian Devil Optimization (TDO) algorithm is utilized to select the most pertinent features for diagnosing lung nodules, and the convergence rate of the standard grey wolf optimization (GWO) algorithm is modified, resulting in an improved GWO algorithm. Consequently, an IGWO-based DCNN is trained on the optimal features obtained from the IoT platform, and the findings are saved in the cloud for the doctor's judgment. The model is built on an Android platform with DCNN-enabled Python libraries, and the findings are evaluated against cutting-edge lung cancer detection models.

摘要

肺癌是一种全球范围内导致死亡率较高的疾病;然而,肺结节是有助于早期诊断肺癌的主要表现,降低放射科医生的工作量并提高诊断率。基于人工智能的神经网络是一种很有前途的技术,可利用通过基于物联网 (IoT) 的患者监测系统从传感器技术获取的患者监测数据自动检测肺结节。然而,标准神经网络依赖于手动获取的特征,这降低了检测的有效性。在本文中,我们提供了一种新的基于物联网的医疗保健监测平台和一种改进的灰狼优化 (IGWO) 深度学习卷积神经网络 (DCNN) 模型,用于肺癌检测。塔斯马尼亚恶魔优化 (TDO) 算法用于选择用于诊断肺结节的最相关特征,并且改进了标准灰狼优化 (GWO) 算法的收敛速度,从而得到改进的 GWO 算法。因此,在从物联网平台获得的最优特征上训练基于 IGWO 的 DCNN,并将结果保存到云中,供医生判断。该模型建立在带有 DCNN 的 Python 库的 Android 平台上,并与最先进的肺癌检测模型进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f83/10052730/1e14d69b1bb8/sensors-23-02932-g001.jpg

相似文献

3
Grey Wolf Optimization algorithm based on Cauchy-Gaussian mutation and improved search strategy.
Sci Rep. 2022 Nov 8;12(1):18961. doi: 10.1038/s41598-022-23713-9.
5
Optimization-enabled deep learning model for disease detection in IoT platform.
Network. 2024 May;35(2):190-211. doi: 10.1080/0954898X.2023.2296568. Epub 2023 Dec 28.
6
A Novel Coverage Optimization Strategy Based on Grey Wolf Algorithm Optimized by Simulated Annealing for Wireless Sensor Networks.
Comput Intell Neurosci. 2021 Mar 16;2021:6688408. doi: 10.1155/2021/6688408. eCollection 2021.
9
Sea Clutter Suppression Method of HFSWR Based on RBF Neural Network Model Optimized by Improved GWO Algorithm.
Comput Intell Neurosci. 2020 Nov 12;2020:8842390. doi: 10.1155/2020/8842390. eCollection 2020.

引用本文的文献

1
A Systematic Review of Real-Time Deep Learning Methods for Image-Based Cancer Diagnostics.
J Multidiscip Healthc. 2024 Sep 9;17:4411-4425. doi: 10.2147/JMDH.S446745. eCollection 2024.
3
A model study of teaching method reform of computer laboratory course integrating internet of things technology.
PLoS One. 2024 Apr 18;19(4):e0298534. doi: 10.1371/journal.pone.0298534. eCollection 2024.

本文引用的文献

1
Deep Learning Techniques to Diagnose Lung Cancer.
Cancers (Basel). 2022 Nov 13;14(22):5569. doi: 10.3390/cancers14225569.
2
An IoT-Based Deep Learning Framework for Early Assessment of Covid-19.
IEEE Internet Things J. 2020 Oct 27;8(21):15855-15862. doi: 10.1109/JIOT.2020.3034074. eCollection 2021 Nov 1.
4
DCNN-based prediction model for detection of age-related macular degeneration from color fundus images.
Med Biol Eng Comput. 2022 May;60(5):1431-1448. doi: 10.1007/s11517-022-02542-y. Epub 2022 Mar 10.
5
Convolutional neural networks for the classification of chest X-rays in the IoT era.
Multimed Tools Appl. 2021;80(19):29051-29065. doi: 10.1007/s11042-021-10907-y. Epub 2021 Jun 17.
6
Ultrasound Elastography for Lung Disease Assessment.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2249-2257. doi: 10.1109/TUFFC.2020.3026536. Epub 2020 Sep 24.
7
Leveraging IoTs and Machine Learning for Patient Diagnosis and Ventilation Management in the Intensive Care Unit.
IEEE Pervasive Comput. 2020 Jul-Sep;19(3):68-78. doi: 10.1109/mprv.2020.2986767. Epub 2020 May 25.
9
Length-of-Stay Prediction for Pediatric Patients With Respiratory Diseases Using Decision Tree Methods.
IEEE J Biomed Health Inform. 2020 Sep;24(9):2651-2662. doi: 10.1109/JBHI.2020.2973285. Epub 2020 Feb 24.
10
Convolutional neural networks based efficient approach for classification of lung diseases.
Health Inf Sci Syst. 2019 Dec 23;8(1):4. doi: 10.1007/s13755-019-0091-3. eCollection 2020 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验