Rehm Gregory B, Woo Sang Hoon, Chen Xin Luigi, Kuhn Brooks T, Cortes-Puch Irene, Anderson Nicholas R, Adams Jason Y, Chuah Chen-Nee
University of California Davis.
Division of Health Informatics at The University of California Davis.
IEEE Pervasive Comput. 2020 Jul-Sep;19(3):68-78. doi: 10.1109/mprv.2020.2986767. Epub 2020 May 25.
Future healthcare systems will rely heavily on clinical decision support systems (CDSS) to improve the decision-making processes of clinicians. To explore the design of future CDSS, we developed a research-focused CDSS for the management of patients in the intensive care unit that leverages Internet of Things (IoT) devices capable of collecting streaming physiologic data from ventilators and other medical devices. We then created machine learning (ML) models that could analyze the collected physiologic data to determine if the ventilator was delivering potentially harmful therapy and if a deadly respiratory condition, acute respiratory distress syndrome (ARDS), was present. We also present work to aggregate these models into a mobile application that can provide responsive, real-time alerts of changes in ventilation to providers. As illustrated in the recent COVID-19 pandemic, being able to accurately predict ARDS in newly infected patients can assist in prioritizing care. We show that CDSS may be used to analyze physiologic data for clinical event recognition and automated diagnosis, and we also highlight future research avenues for hospital CDSS.
未来的医疗保健系统将严重依赖临床决策支持系统(CDSS)来改善临床医生的决策过程。为了探索未来CDSS的设计,我们开发了一个专注于研究的CDSS,用于重症监护病房患者的管理,该系统利用物联网(IoT)设备,能够从呼吸机和其他医疗设备收集实时生理数据。然后,我们创建了机器学习(ML)模型,该模型可以分析收集到的生理数据,以确定呼吸机是否正在提供潜在有害的治疗,以及是否存在致命的呼吸系统疾病——急性呼吸窘迫综合征(ARDS)。我们还展示了将这些模型整合到一个移动应用程序中的工作,该应用程序可以向医疗人员提供关于通气变化的响应式实时警报。正如最近的COVID-19大流行所表明的那样,能够准确预测新感染患者的ARDS有助于确定护理的优先级。我们表明,CDSS可用于分析生理数据以进行临床事件识别和自动诊断,并且我们还强调了医院CDSS未来的研究方向。