文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

石墨烯纳米带场效应晶体管用于糖分子检测的模拟:半经验建模。

Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling.

机构信息

Electrical and Communication Engineering Department, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.

出版信息

Sensors (Basel). 2023 Mar 10;23(6):3010. doi: 10.3390/s23063010.


DOI:10.3390/s23063010
PMID:36991722
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10051405/
Abstract

Graphene has remarkable characteristics that make it a potential candidate for optoelectronics and electronics applications. Graphene is a sensitive material that reacts to any physical variation in its environment. Due to its extremely low intrinsic electrical noise, graphene can detect even a single molecule in its proximity. This feature makes graphene a potential candidate for identifying a wide range of organic and inorganic compounds. Graphene and its derivatives are considered one of the best materials to detect sugar molecules due to their electronic properties. Graphene has low intrinsic noise, making it an ideal membrane for detecting low concentrations of sugar molecules. In this work, a graphene nanoribbon field effect transistor (GNR-FET) is designed and utilized to identify sugar molecules such as fructose, xylose, and glucose. The variation in the current of the GNR-FET in the presence of each of the sugar molecules is utilized as the detection signal. The designed GNR-FET shows a clear change in the device density of states, transmission spectrum, and current in the presence of each of the sugar molecules. The simulated sensor is made of a pair of metallic zigzag graphene nanoribbons (ZGNR) joint via a channel of armchair graphene nanoribbon (AGNR) and a gate. The Quantumwise Atomistix Toolkit (ATK) is used to design and conduct the nanoscale simulations of the GNR-FET. Semi-empirical modeling, along with non-equilibrium Green's functional theory (SE + NEGF), is used to develop and study the designed sensor. This article suggests that the designed GNR transistor has the potential to identify each of the sugar molecules in real time with high accuracy.

摘要

石墨烯具有显著的特性,使其成为光电和电子应用的潜在候选材料。石墨烯是一种敏感的材料,对其环境中的任何物理变化都有反应。由于其极低的固有电噪声,石墨烯甚至可以检测到其附近的单个分子。这一特性使石墨烯成为识别广泛的有机和无机化合物的潜在候选材料。

由于其电子特性,石墨烯及其衍生物被认为是检测糖分子的最佳材料之一。石墨烯具有低固有噪声,使其成为检测低浓度糖分子的理想膜。在这项工作中,设计并利用了石墨烯纳米带场效应晶体管(GNR-FET)来识别果糖、木糖和葡萄糖等糖分子。利用 GNR-FET 在存在每种糖分子时电流的变化作为检测信号。

所设计的 GNR-FET 在存在每种糖分子时,显示出器件态密度、传输谱和电流的明显变化。模拟传感器由一对金属锯齿形石墨烯纳米带(ZGNR)通过扶手椅石墨烯纳米带(AGNR)通道和栅极连接而成。使用 Quantumwise Atomistix Toolkit (ATK) 设计和进行 GNR-FET 的纳米级模拟。使用半经验建模和非平衡格林函数理论(SE + NEGF)来开发和研究设计的传感器。

本文表明,所设计的 GNR 晶体管有可能实时高精度地识别每种糖分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/1d71dc5af266/sensors-23-03010-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/f3e1ece7fdfc/sensors-23-03010-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/dbe266be5d09/sensors-23-03010-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/8910ef901e70/sensors-23-03010-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/f734ca4a0101/sensors-23-03010-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/ff2a6a9e3d32/sensors-23-03010-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/0cff17b4e55c/sensors-23-03010-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/8c291b2dc155/sensors-23-03010-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/fa2f87a9a248/sensors-23-03010-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/1201c4f3d3ee/sensors-23-03010-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/1d71dc5af266/sensors-23-03010-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/f3e1ece7fdfc/sensors-23-03010-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/dbe266be5d09/sensors-23-03010-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/8910ef901e70/sensors-23-03010-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/f734ca4a0101/sensors-23-03010-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/ff2a6a9e3d32/sensors-23-03010-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/0cff17b4e55c/sensors-23-03010-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/8c291b2dc155/sensors-23-03010-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/fa2f87a9a248/sensors-23-03010-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/1201c4f3d3ee/sensors-23-03010-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d30/10051405/1d71dc5af266/sensors-23-03010-g010.jpg

相似文献

[1]
Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling.

Sensors (Basel). 2023-3-10

[2]
Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study.

Nanomaterials (Basel). 2020-1-3

[3]
Sugar Molecules Detection via CN Transistor-Based Sensor: First Principles Modeling.

Nanomaterials (Basel). 2023-2-11

[4]
Detection of DNA Bases via Field Effect Transistor of Graphene Nanoribbon With a Nanopore: Semi-Empirical Modeling.

IEEE Trans Nanobioscience. 2022-7

[5]
First Principles Simulations of Phenol and Methanol Detector Based on Pristine Graphene Nanosheet and Armchair Graphene Nanoribbons.

Sensors (Basel). 2019-6-18

[6]
The Parametric Study of Armchair Graphene Nanoribbon Field Effect Transistor by Non-Equilibrium Green's Function Method.

J Nanosci Nanotechnol. 2020-8-1

[7]
Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.

J Phys Condens Matter. 2012-2-9

[8]
Trade-off analysis between g/I and f of GNR-FETs with single-gate and double-gate device structure.

Sci Rep. 2024-5-3

[9]
The understanding of the impact of efficiently optimized underlap length on analog/RF performance parameters of GNR-FETs.

Sci Rep. 2023-8-24

[10]
Contact effects in graphene nanoribbon transistors.

Nano Lett. 2008-7

引用本文的文献

[1]
Correlation of Transmission Properties with Glucose Concentration in a Graphene-Based Microwave Resonator.

Micromachines (Basel). 2023-11-27

[2]
Detection of butane and propane gases via CN sensors: first principles modeling.

Sci Rep. 2023-11-7

本文引用的文献

[1]
Real-time COVID-19 detection via graphite oxide-based field-effect transistor biosensors decorated with Pt/Pd nanoparticles.

Sci Rep. 2022-10-28

[2]
COVID-19 Detection via Silicon Nanowire Field-Effect Transistor: Setup and Modeling of Its Function.

Nanomaterials (Basel). 2022-7-31

[3]
Portable, quantitative, and sequential monitoring of copper ions and pyrophosphate based on a DNAzyme-FeO nanosystem and glucometer readout.

Anal Bioanal Chem. 2021-11

[4]
Simultaneous Detection of Glucose and Fructose in Synthetic Musts by Multivariate Analysis of Silica-Based Amperometric Sensor Signals.

Sensors (Basel). 2021-6-18

[5]
Metallic Graphene Nanoribbons.

Nanomicro Lett. 2021-1-5

[6]
Detection of DNA Bases via Field Effect Transistor of Graphene Nanoribbon With a Nanopore: Semi-Empirical Modeling.

IEEE Trans Nanobioscience. 2022-7

[7]
Au nanoparticles modified CuO nanowireelectrode based non-enzymatic glucose detection with improved linearity.

Sci Rep. 2020-7-10

[8]
Graphene-Based Biosensor for Early Detection of Iron Deficiency.

Sensors (Basel). 2020-7-1

[9]
Heritability of Curve Patterns in Oral Glucose Tolerance Test.

Twin Res Hum Genet. 2020-2

[10]
Analysis of the Sugar Content in Food Products by Using Gas Chromatography Mass Spectrometry and Enzymatic Methods.

Foods. 2018-11-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索