Suppr超能文献

HMT-Net:用于皮肤疾病分割的 Transformer 和 MLP 混合编码器。

HMT-Net: Transformer and MLP Hybrid Encoder for Skin Disease Segmentation.

机构信息

College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.

出版信息

Sensors (Basel). 2023 Mar 13;23(6):3067. doi: 10.3390/s23063067.

Abstract

At present, convolutional neural networks (CNNs) have been widely applied to the task of skin disease image segmentation due to the fact of their powerful information discrimination abilities and have achieved good results. However, it is difficult for CNNs to capture the connection between long-range contexts when extracting deep semantic features of lesion images, and the resulting semantic gap leads to the problem of segmentation blur in skin lesion image segmentation. In order to solve the above problems, we designed a hybrid encoder network based on transformer and fully connected neural network (MLP) architecture, and we call this approach HMT-Net. In the HMT-Net network, we use the attention mechanism of the CTrans module to learn the global relevance of the feature map to improve the network's ability to understand the overall foreground information of the lesion. On the other hand, we use the TokMLP module to effectively enhance the network's ability to learn the boundary features of lesion images. In the TokMLP module, the tokenized MLP axial displacement operation strengthens the connection between pixels to facilitate the extraction of local feature information by our network. In order to verify the superiority of our network in segmentation tasks, we conducted extensive experiments on the proposed HMT-Net network and several newly proposed Transformer and MLP networks on three public datasets (ISIC2018, ISBI2017, and ISBI2016) and obtained the following results. Our method achieves 82.39%, 75.53%, and 83.98% on the Dice index and 89.35%, 84.93%, and 91.33% on the IOU. Compared with the latest skin disease segmentation network, FAC-Net, our method improves the Dice index by 1.99%, 1.68%, and 1.6%, respectively. In addition, the IOU indicators have increased by 0.45%, 2.36%, and 1.13%, respectively. The experimental results show that our designed HMT-Net achieves state-of-the-art performance superior to other segmentation methods.

摘要

目前,卷积神经网络(CNN)由于具有强大的信息判别能力,已广泛应用于皮肤病图像分割任务,并取得了良好的效果。然而,在提取病变图像的深层语义特征时,CNN 很难捕捉到长程上下文之间的联系,导致语义鸿沟,从而导致皮肤病变图像分割的分割模糊问题。为了解决上述问题,我们设计了一种基于 Transformer 和全连接神经网络(MLP)架构的混合编码器网络,我们称之为 HMT-Net。在 HMT-Net 网络中,我们使用 CTrans 模块的注意力机制来学习特征图的全局相关性,以提高网络对病变整体前景信息的理解能力。另一方面,我们使用 TokMLP 模块有效地增强了网络学习病变图像边界特征的能力。在 TokMLP 模块中,标记化的 MLP 轴向位移操作增强了像素之间的连接,便于我们的网络提取局部特征信息。为了验证我们的网络在分割任务中的优越性,我们在三个公共数据集(ISIC2018、ISBI2017 和 ISBI2016)上对所提出的 HMT-Net 网络和几个新提出的 Transformer 和 MLP 网络进行了广泛的实验,并得到了以下结果。我们的方法在 Dice 指数上分别达到 82.39%、75.53%和 83.98%,在 IOU 上分别达到 89.35%、84.93%和 91.33%。与最新的皮肤病分割网络 FAC-Net 相比,我们的方法分别提高了 1.99%、1.68%和 1.6%的 Dice 指数。此外,IOU 指标分别提高了 0.45%、2.36%和 1.13%。实验结果表明,我们设计的 HMT-Net 达到了优于其他分割方法的最新水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验