Department of Computer Science, Brains Institute, Peshawar 25000, Pakistan.
Department of Computer Science, University of Buner, Buner 19290, Pakistan.
Sensors (Basel). 2023 Mar 16;23(6):3180. doi: 10.3390/s23063180.
Customer segmentation has been a hot topic for decades, and the competition among businesses makes it more challenging. The recently introduced Recency, Frequency, Monetary, and Time (RFMT) model used an agglomerative algorithm for segmentation and a dendrogram for clustering, which solved the problem. However, there is still room for a single algorithm to analyze the data's characteristics. The proposed novel approach model RFMT analyzed Pakistan's largest e-commerce dataset by introducing k-means, Gaussian, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) beside agglomerative algorithms for segmentation. The cluster is determined through different cluster factor analysis methods, i.e., elbow, dendrogram, silhouette, Calinsky-Harabasz, Davies-Bouldin, and Dunn index. They finally elected a stable and distinctive cluster using the state-of-the-art majority voting (mode version) technique, which resulted in three different clusters. Besides all the segmentation, i.e., product categories, year-wise, fiscal year-wise, and month-wise, the approach also includes the transaction status and seasons-wise segmentation. This segmentation will help the retailer improve customer relationships, implement good strategies, and improve targeted marketing.
客户细分已经是几十年来的热门话题,企业之间的竞争使得这一问题更加具有挑战性。最近引入的 Recency、Frequency、Monetary 和 Time(RFMT)模型使用了凝聚算法进行分割和聚类,从而解决了这一问题。然而,仍然需要一个单一的算法来分析数据的特征。所提出的新方法模型 RFMT 除了使用凝聚算法进行分割外,还通过引入 k-均值、高斯和基于密度的空间聚类应用噪声(DBSCAN)来分析巴基斯坦最大的电子商务数据集。通过不同的聚类因子分析方法,即肘部、聚类图、轮廓、Calinsky-Harabasz、Davies-Bouldin 和 Dunn 指数,来确定聚类。最后,他们使用最先进的多数投票(模式版本)技术选择了一个稳定且独特的聚类,结果产生了三个不同的聚类。除了所有的分割,即产品类别、年度、财政年度和月度,该方法还包括交易状态和季节性分割。这种分割将帮助零售商改善客户关系,实施良好的策略,并提高目标营销效果。