Suppr超能文献

基于机器学习的分类算法的客户分析,用于使用最近一次、频率、货币和时间进行有效的细分。

Customer Analysis Using Machine Learning-Based Classification Algorithms for Effective Segmentation Using Recency, Frequency, Monetary, and Time.

机构信息

Department of Computer Science, Brains Institute, Peshawar 25000, Pakistan.

Department of Computer Science, University of Buner, Buner 19290, Pakistan.

出版信息

Sensors (Basel). 2023 Mar 16;23(6):3180. doi: 10.3390/s23063180.

Abstract

Customer segmentation has been a hot topic for decades, and the competition among businesses makes it more challenging. The recently introduced Recency, Frequency, Monetary, and Time (RFMT) model used an agglomerative algorithm for segmentation and a dendrogram for clustering, which solved the problem. However, there is still room for a single algorithm to analyze the data's characteristics. The proposed novel approach model RFMT analyzed Pakistan's largest e-commerce dataset by introducing k-means, Gaussian, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) beside agglomerative algorithms for segmentation. The cluster is determined through different cluster factor analysis methods, i.e., elbow, dendrogram, silhouette, Calinsky-Harabasz, Davies-Bouldin, and Dunn index. They finally elected a stable and distinctive cluster using the state-of-the-art majority voting (mode version) technique, which resulted in three different clusters. Besides all the segmentation, i.e., product categories, year-wise, fiscal year-wise, and month-wise, the approach also includes the transaction status and seasons-wise segmentation. This segmentation will help the retailer improve customer relationships, implement good strategies, and improve targeted marketing.

摘要

客户细分已经是几十年来的热门话题,企业之间的竞争使得这一问题更加具有挑战性。最近引入的 Recency、Frequency、Monetary 和 Time(RFMT)模型使用了凝聚算法进行分割和聚类,从而解决了这一问题。然而,仍然需要一个单一的算法来分析数据的特征。所提出的新方法模型 RFMT 除了使用凝聚算法进行分割外,还通过引入 k-均值、高斯和基于密度的空间聚类应用噪声(DBSCAN)来分析巴基斯坦最大的电子商务数据集。通过不同的聚类因子分析方法,即肘部、聚类图、轮廓、Calinsky-Harabasz、Davies-Bouldin 和 Dunn 指数,来确定聚类。最后,他们使用最先进的多数投票(模式版本)技术选择了一个稳定且独特的聚类,结果产生了三个不同的聚类。除了所有的分割,即产品类别、年度、财政年度和月度,该方法还包括交易状态和季节性分割。这种分割将帮助零售商改善客户关系,实施良好的策略,并提高目标营销效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c0/10059577/880dcdcd86d0/sensors-23-03180-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验