Suppr超能文献

用于腰椎和骨盆运动学聚类的机器学习

Machine learning for lumbar and pelvis kinematics clustering.

作者信息

Higgins Seth, Dutta Sandipan, Kakar Rumit Singh

机构信息

Human Movement Science, Oakland University, Rochester Hills, MI, USA.

Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Aug;27(10):1332-1345. doi: 10.1080/10255842.2023.2241593. Epub 2023 Aug 7.

Abstract

Clustering algorithms such as k-means and agglomerative hierarchical clustering (HCA) may provide a unique opportunity to analyze time-series kinematic data. Here we present an approach for determining number of clusters and which clustering algorithm to use on time-series lumbar and pelvis kinematic data. Cluster evaluation measures such as silhouette coefficient, elbow method, Dunn Index, and gap statistic were used to evaluate the quality of decision making. The result show that multiple clustering evaluation methods should be used to determine the ideal number of clusters and algorithm suitable for clustering time-series data for each dataset being analyzed.

摘要

诸如k均值和凝聚层次聚类(HCA)等聚类算法可能为分析时间序列运动学数据提供独特的机会。在此,我们提出一种方法,用于确定聚类数量以及在时间序列腰椎和骨盆运动学数据上使用哪种聚类算法。使用轮廓系数、肘部方法、邓恩指数和间隙统计等聚类评估指标来评估决策质量。结果表明,应使用多种聚类评估方法来确定理想的聚类数量以及适合为每个被分析数据集的时间序列数据进行聚类的算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验