Suppr超能文献

提高道路和铁路智能交通中 3D 单目目标检测与跟踪的效率。

Improving the Efficiency of 3D Monocular Object Detection and Tracking for Road and Railway Smart Mobility.

机构信息

Univ Rouen Normandie, Normandie Univ, ESIGELEC, IRSEEM, 76000 Rouen, France.

SEGULA Technologies, 19 Rue d'Arras, 92000 Nanterre, France.

出版信息

Sensors (Basel). 2023 Mar 16;23(6):3197. doi: 10.3390/s23063197.

Abstract

Three-dimensional (3D) real-time object detection and tracking is an important task in the case of autonomous vehicles and road and railway smart mobility, in order to allow them to analyze their environment for navigation and obstacle avoidance purposes. In this paper, we improve the efficiency of 3D monocular object detection by using dataset combination and knowledge distillation, and by creating a lightweight model. Firstly, we combine real and synthetic datasets to increase the diversity and richness of the training data. Then, we use knowledge distillation to transfer the knowledge from a large, pre-trained model to a smaller, lightweight model. Finally, we create a lightweight model by selecting the combinations of width, depth & resolution in order to reach a target complexity and computation time. Our experiments showed that using each method improves either the accuracy or the efficiency of our model with no significant drawbacks. Using all these approaches is especially useful for resource-constrained environments, such as self-driving cars and railway systems.

摘要

三维(3D)实时目标检测和跟踪是自动驾驶汽车和道路及铁路智能交通的重要任务,以便它们能够分析环境以进行导航和避障。在本文中,我们通过使用数据集组合和知识蒸馏以及创建轻量级模型来提高 3D 单目目标检测的效率。首先,我们结合真实和合成数据集来增加训练数据的多样性和丰富性。然后,我们使用知识蒸馏将知识从大型预训练模型转移到较小的轻量级模型。最后,我们通过选择宽度、深度和分辨率的组合来创建一个轻量级模型,以达到目标复杂度和计算时间。我们的实验表明,使用每种方法都可以提高模型的准确性或效率,而没有明显的缺点。在资源受限的环境(如自动驾驶汽车和铁路系统)中,使用所有这些方法特别有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50eb/10053452/93ec438924e9/sensors-23-03197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验