Department of Multimedia Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea.
Sensors (Basel). 2023 Mar 20;23(6):3270. doi: 10.3390/s23063270.
Tracking unmanned aerial vehicles (UAVs) in outdoor scenes poses significant challenges due to their dynamic motion, diverse sizes, and changes in appearance. This paper proposes an efficient hybrid tracking method for UAVs, comprising a detector, tracker, and integrator. The integrator combines detection and tracking, and updates the target's features online while tracking, thereby addressing the aforementioned challenges. The online update mechanism ensures robust tracking by handling object deformation, diverse types of UAVs, and changes in background. We conducted experiments on custom and public UAV datasets to train the deep learning-based detector and evaluate the tracking methods, including the commonly used UAV123 and UAVL datasets, to demonstrate generalizability. The experimental results show the effectiveness and robustness of our proposed method under challenging conditions, such as out-of-view and low-resolution scenarios, and demonstrate its performance in UAV detection tasks.
跟踪户外场景中的无人飞行器 (UAV) 具有很大的挑战性,因为它们的运动是动态的,尺寸多样,外观也会发生变化。本文提出了一种高效的 UAV 混合跟踪方法,包括检测器、跟踪器和积分器。积分器将检测和跟踪结合起来,在跟踪的同时在线更新目标的特征,从而解决了上述挑战。在线更新机制通过处理物体变形、多种类型的 UAV 和背景变化来确保稳健的跟踪。我们在定制和公共 UAV 数据集上进行了实验,以训练基于深度学习的检测器并评估跟踪方法,包括常用的 UAV123 和 UAVL 数据集,以证明其通用性。实验结果表明,我们的方法在具有挑战性的条件下,如不可见和低分辨率场景下,具有有效性和鲁棒性,并证明了其在 UAV 检测任务中的性能。