Xu Bing, Dallâ Aglio Lorenza, Flournoy John, Bortsova Gerda, Tervo-Clemmens Brenden, Collins Paul, de Bruijne Marleen, Luciana Monica, Marquand Andre, Wang Hao, Tiemeier Henning, Muetzel Ryan L
medRxiv. 2023 Mar 20:2023.03.12.23287158. doi: 10.1101/2023.03.12.23287158.
Multivariate machine learning techniques are a promising set of tools for identifying complex brain-behavior associations. However, failure to replicate results from these methods across samples has hampered their clinical relevance. This study aimed to delineate dimensions of brain functional connectivity that are associated with child psychiatric symptoms in two large and independent cohorts: the Adolescent Brain Cognitive Development (ABCD) Study and the Generation R Study (total =8,605). Using sparse canonical correlations analysis, we identified three brain-behavior dimensions in ABCD: attention problems, aggression and rule-breaking behaviors, and withdrawn behaviors. Importantly, generalizability of these dimensions was consistently observed in ABCD, suggesting robust multivariate brain-behavior associations. Despite this, generalizability in Generation R was limited. These results highlight that the of generalizability can vary depending on the external validation methods employed as well as the datasets used, emphasizing that biomarkers will remain elusive until models generalize better in true external settings.
多变量机器学习技术是用于识别复杂脑-行为关联的一组很有前景的工具。然而,这些方法所得结果在不同样本间无法重复,这阻碍了它们的临床应用价值。本研究旨在描绘两个大型独立队列(青少年大脑认知发展[ABCD]研究和R代研究,共8605人)中与儿童精神症状相关的脑功能连接维度。使用稀疏典型相关分析,我们在ABCD研究中确定了三个脑-行为维度:注意力问题、攻击和违规行为以及退缩行为。重要的是,这些维度在ABCD研究中始终具有可推广性,表明存在强大的多变量脑-行为关联。尽管如此,R代研究中的可推广性有限。这些结果凸显出可推广性会因所采用的外部验证方法以及所使用的数据集而异,强调在模型能在真实外部环境中更好地推广之前,生物标志物仍难以捉摸。