Suppr超能文献

儿童精神问题基于大脑的多变量维度:可推广程度。

Multivariate brain-based dimensions of child psychiatric problems: degrees of generalizability.

作者信息

Xu Bing, Dallâ Aglio Lorenza, Flournoy John, Bortsova Gerda, Tervo-Clemmens Brenden, Collins Paul, de Bruijne Marleen, Luciana Monica, Marquand Andre, Wang Hao, Tiemeier Henning, Muetzel Ryan L

出版信息

medRxiv. 2023 Mar 20:2023.03.12.23287158. doi: 10.1101/2023.03.12.23287158.

Abstract

Multivariate machine learning techniques are a promising set of tools for identifying complex brain-behavior associations. However, failure to replicate results from these methods across samples has hampered their clinical relevance. This study aimed to delineate dimensions of brain functional connectivity that are associated with child psychiatric symptoms in two large and independent cohorts: the Adolescent Brain Cognitive Development (ABCD) Study and the Generation R Study (total =8,605). Using sparse canonical correlations analysis, we identified three brain-behavior dimensions in ABCD: attention problems, aggression and rule-breaking behaviors, and withdrawn behaviors. Importantly, generalizability of these dimensions was consistently observed in ABCD, suggesting robust multivariate brain-behavior associations. Despite this, generalizability in Generation R was limited. These results highlight that the of generalizability can vary depending on the external validation methods employed as well as the datasets used, emphasizing that biomarkers will remain elusive until models generalize better in true external settings.

摘要

多变量机器学习技术是用于识别复杂脑-行为关联的一组很有前景的工具。然而,这些方法所得结果在不同样本间无法重复,这阻碍了它们的临床应用价值。本研究旨在描绘两个大型独立队列(青少年大脑认知发展[ABCD]研究和R代研究,共8605人)中与儿童精神症状相关的脑功能连接维度。使用稀疏典型相关分析,我们在ABCD研究中确定了三个脑-行为维度:注意力问题、攻击和违规行为以及退缩行为。重要的是,这些维度在ABCD研究中始终具有可推广性,表明存在强大的多变量脑-行为关联。尽管如此,R代研究中的可推广性有限。这些结果凸显出可推广性会因所采用的外部验证方法以及所使用的数据集而异,强调在模型能在真实外部环境中更好地推广之前,生物标志物仍难以捉摸。

相似文献

1
Multivariate brain-based dimensions of child psychiatric problems: degrees of generalizability.
medRxiv. 2023 Mar 20:2023.03.12.23287158. doi: 10.1101/2023.03.12.23287158.
2
Limited generalizability of multivariate brain-based dimensions of child psychiatric symptoms.
Commun Psychol. 2024 Feb 28;2(1):16. doi: 10.1038/s44271-024-00063-y.
3
Neurobiological, familial and genetic risk factors for dimensional psychopathology in the Adolescent Brain Cognitive Development study.
Mol Psychiatry. 2022 Jun;27(6):2731-2741. doi: 10.1038/s41380-022-01522-w. Epub 2022 Mar 31.
4
Shared and Anxiety-Specific Pediatric Psychopathology Dimensions Manifest Distributed Neural Correlates.
Biol Psychiatry. 2021 Mar 15;89(6):579-587. doi: 10.1016/j.biopsych.2020.10.018. Epub 2020 Nov 9.
6
Multiple Holdouts With Stability: Improving the Generalizability of Machine Learning Analyses of Brain-Behavior Relationships.
Biol Psychiatry. 2020 Feb 15;87(4):368-376. doi: 10.1016/j.biopsych.2019.12.001. Epub 2019 Dec 10.
7
Large-scale functional brain networks of maladaptive childhood aggression identified by connectome-based predictive modeling.
Mol Psychiatry. 2022 Feb;27(2):985-999. doi: 10.1038/s41380-021-01317-5. Epub 2021 Oct 25.
8
Voxelwise Multivariate Analysis of Brain-Psychosocial Associations in Adolescents Reveals 6 Latent Dimensions of Cognition and Psychopathology.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Sep;9(9):915-927. doi: 10.1016/j.bpsc.2024.03.006. Epub 2024 Apr 6.
9
Linked dimensions of psychopathology and connectivity in functional brain networks.
Nat Commun. 2018 Aug 1;9(1):3003. doi: 10.1038/s41467-018-05317-y.
10
Longitudinal Associations Between White Matter Microstructure and Psychiatric Symptoms in Youth.
J Am Acad Child Adolesc Psychiatry. 2023 Dec;62(12):1326-1339. doi: 10.1016/j.jaac.2023.04.019. Epub 2023 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验