Suppr超能文献

共享和焦虑特异性儿科精神病理学维度表现出分布式神经相关性。

Shared and Anxiety-Specific Pediatric Psychopathology Dimensions Manifest Distributed Neural Correlates.

机构信息

Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.

Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.

出版信息

Biol Psychiatry. 2021 Mar 15;89(6):579-587. doi: 10.1016/j.biopsych.2020.10.018. Epub 2020 Nov 9.

Abstract

BACKGROUND

Imaging research has not yet delivered reliable psychiatric biomarkers. One challenge, particularly among youth, is high comorbidity. This challenge might be met through canonical correlation analysis designed to model mutual dependencies between symptom dimensions and neural measures. We mapped the multivariate associations that intrinsic functional connectivity manifests with pediatric symptoms of anxiety, irritability, and attention-deficit/hyperactivity disorder (ADHD) as common, impactful, co-occurring problems. We evaluate the replicability of such latent dimensions in an independent sample.

METHODS

We obtained ratings of anxiety, irritability, and ADHD, and 10 minutes of resting-state functional magnetic resonance imaging data, from two independent cohorts. Both cohorts (discovery: n = 182; replication: n = 326) included treatment-seeking youth with anxiety disorders, with disruptive mood dysregulation disorder, with ADHD, or without psychopathology. Functional connectivity was modeled as partial correlations among 216 brain areas. Using canonical correlation analysis and independent component analysis jointly we sought maximally correlated, maximally interpretable latent dimensions of brain connectivity and clinical symptoms.

RESULTS

We identified seven canonical variates in the discovery and five in the replication cohort. Of these canonical variates, three exhibited similarities across datasets: two variates consistently captured shared aspects of irritability, ADHD, and anxiety, while the third was specific to anxiety. Across cohorts, canonical variates did not relate to specific resting-state networks but comprised edges interconnecting established networks within and across both hemispheres.

CONCLUSIONS

Findings revealed two replicable types of clinical variates, one related to multiple symptom dimensions and a second relatively specific to anxiety. Both types involved a multitude of broadly distributed, weak brain connections as opposed to strong connections encompassing known resting-state networks.

摘要

背景

影像学研究尚未提供可靠的精神科生物标志物。其中一个挑战,尤其是在年轻人中,是高共病率。通过设计典型相关分析来模拟症状维度和神经测量之间的相互依赖性,可能会解决这一挑战。我们绘制了内在功能连接与儿科焦虑、易激惹和注意力缺陷/多动障碍(ADHD)症状的多变量关联图,这些症状是常见的、有影响的、同时发生的问题。我们在一个独立的样本中评估了这些潜在维度的可重复性。

方法

我们从两个独立的队列中获得了焦虑、易激惹和 ADHD 的评分,以及 10 分钟的静息状态功能磁共振成像数据。两个队列(发现:n=182;复制:n=326)均包括有焦虑障碍、破坏性情绪失调障碍、ADHD 的治疗寻求青少年,以及无精神病理学的青少年。功能连接被建模为 216 个大脑区域之间的偏相关。我们联合使用典型相关分析和独立成分分析,寻求大脑连接和临床症状的最大相关、最可解释的潜在维度。

结果

我们在发现队列中识别了七个典型变量,在复制队列中识别了五个。在这些典型变量中,有三个在两个数据集之间具有相似性:两个变量一致地捕捉到了易激惹、ADHD 和焦虑的共同方面,而第三个变量则是专门针对焦虑的。在两个队列中,典型变量与特定的静息状态网络无关,但包括了在两个半球内和跨半球连接的已建立网络的边缘。

结论

研究结果揭示了两种可复制的临床变量类型,一种与多个症状维度有关,另一种与焦虑相对特异。这两种类型都涉及到大量广泛分布的、微弱的大脑连接,而不是包含已知静息状态网络的强连接。

相似文献

6
Comparing Brain Morphometry Across Multiple Childhood Psychiatric Disorders.比较多种儿童精神疾病的脑形态学
J Am Acad Child Adolesc Psychiatry. 2016 Dec;55(12):1027-1037.e3. doi: 10.1016/j.jaac.2016.08.008. Epub 2016 Sep 20.

引用本文的文献

本文引用的文献

1
Permutation inference for canonical correlation analysis.典范相关分析的置换推断。
Neuroimage. 2020 Oct 15;220:117065. doi: 10.1016/j.neuroimage.2020.117065. Epub 2020 Jun 27.
2
Patterns of sociocognitive stratification and perinatal risk in the child brain.社会认知分层模式与儿童大脑围产期风险。
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12419-12427. doi: 10.1073/pnas.2001517117. Epub 2020 May 14.
5
fMRIPrep: a robust preprocessing pipeline for functional MRI.fMRIPrep:用于功能磁共振成像的强大预处理流水线。
Nat Methods. 2019 Jan;16(1):111-116. doi: 10.1038/s41592-018-0235-4. Epub 2018 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验