Suppr超能文献

肿瘤线粒体DNA突变驱动有氧糖酵解以增强免疫检查点阻断。

Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade.

作者信息

Mahmood Mahnoor, Liu Eric Minwei, Shergold Amy L, Tolla Elisabetta, Tait-Mulder Jacqueline, Huerta Uribe Alejandro, Shokry Engy, Young Alex L, Lilla Sergio, Kim Minsoo, Park Tricia, Manchon J L, Rodríguez-Antona Crístina, Walters Rowan C, Springett Roger J, Blaza James N, Zanivan Sara, Sumpton David, Roberts Edward W, Reznik Ed, Gammage Payam A

机构信息

Cancer Research UK Beatson Institute, Glasgow, UK.

Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

bioRxiv. 2023 Mar 23:2023.03.21.533091. doi: 10.1101/2023.03.21.533091.

Abstract

The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented. While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages, whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, , into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.

摘要

线粒体基因组编码呼吸和代谢稳态所必需的机制,但矛盾的是,它是癌症基因组中最常见的体细胞突变靶点之一,呼吸复合体I基因的截短突变最为常见。虽然线粒体DNA(mtDNA)突变在几种肿瘤谱系中与预后改善和恶化都有关联,但这些突变是驱动因素还是对肿瘤生物学产生任何功能影响仍存在争议。在这里,我们发现编码复合体I的mtDNA突变足以重塑肿瘤免疫格局和对免疫检查点阻断的治疗抗性。我们使用mtDNA碱基编辑技术,在mtDNA编码的复合体I基因中设计了复发性截短突变,引入黑色素瘤小鼠模型。从机制上讲,这些突变促进了丙酮酸作为末端电子受体的利用,并增加了糖酵解通量,而对氧气消耗没有重大影响,这是由过度还原的NAD池以及GAPDH和MDH1之间的NADH穿梭驱动的,介导了类似瓦伯格效应的代谢转变。反过来,在不改变肿瘤生长的情况下,这种改变的癌细胞内在代谢重塑了小鼠和人类的肿瘤微环境,促进了以驻留中性粒细胞丧失为特征的抗肿瘤免疫反应。这随后使携带高mtDNA突变异质性的肿瘤对免疫检查点阻断敏感,关键代谢变化的表型模拟足以介导这种效应。令人惊讶的是,携带>50% mtDNA突变异质性的患者病变对检查点抑制剂阻断的反应率也提高了>2.5倍。综上所述,这些数据表明mtDNA突变是癌症代谢和肿瘤生物学的功能调节因子,具有治疗开发和治疗分层的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598d/10055208/988afdfb6658/nihpp-2023.03.21.533091v1-f0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验