Robertson Amicha, Sall Joseph, Venzon Mericien, Olivas Janet J, Zheng Xuhui, Cammer Michael, Antao Noelle, Thur Rafaela Saes, Bethony Jeffrey, Nejsum Peter, Torres Victor J, Liang Feng-Xia, Cadwell Ken
Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
Microscopy Laboratory, Division of Advanced Research Technologies, New York University Langone Health, New York, NY 10016, USA.
bioRxiv. 2023 Mar 13:2023.03.13.532458. doi: 10.1101/2023.03.13.532458.
The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite . Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Although unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs, egg hatching was most efficient in the presence of bacteria that bound poles with high density such as . Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.
细菌微生物群通过介导哺乳动物宿主摄入的寄生虫卵孵化,促进了寄生于肠道的鞭虫的生命周期。尽管与定植相关的疾病负担巨大,但这种跨界相互作用的潜在机制一直不明。在此,我们使用多尺度显微镜方法来确定与小鼠模型寄生虫的细菌介导的卵孵化相关的结构事件。通过结合扫描电子显微镜(SEM)和连续块面SEM(SBFSEM),我们观察了卵壳的外表面形态,并生成了孵化过程中卵和幼虫的三维结构。这些图像显示,在幼虫孵出之前,暴露于诱导孵化的细菌会催化极性栓的不对称降解。尽管不相关的细菌会导致类似的电子密度损失和栓结构完整性的溶解,但在存在如高密度结合极的细菌时,卵孵化效率最高。与分类学上不同的细菌诱导孵化的能力一致,其他结果表明,卵内幼虫释放的几丁质酶从内部降解栓,而不是外部环境中细菌产生的酶。这些发现以超微结构分辨率定义了寄生虫对哺乳动物肠道微生物丰富环境的进化适应。