Gelsinger Diego R, Vo Phuc Leo H, Klompe Sanne E, Ronda Carlotta, Wang Harris, Sternberg Samuel H
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.
bioRxiv. 2023 Mar 21:2023.03.18.533263. doi: 10.1101/2023.03.18.533263.
CRISPR-associated transposons (CASTs) have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability, and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in at efficiencies approaching ~100%, generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CAST systems, including guidelines on the available homologs and vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational crRNA design algorithm to avoid potential off-targets and CRISPR array cloning pipeline for DNA insertion multiplexing. Starting from available plasmid constructs, the isolation of clonal strains containing a novel genomic integration event-of-interest can be achieved in 1 week using standard molecular biology techniques.
CRISPR相关转座子(CASTs)有潜力改变千碱基规模基因组工程的技术格局,因为它们能够高精度整合大片段遗传载荷,易于编程,且无需同源重组机制。这些转座子编码高效的、CRISPR RNA引导的转座酶,能以接近100%的效率在基因组中进行插入,用多个向导编程时可产生多重编辑,并在多种革兰氏阴性细菌物种中稳健发挥作用。本文介绍了使用CAST系统对细菌基因组进行工程改造的详细方案,包括关于可用同源物和载体的指南、向导RNA和DNA载荷的定制、常见递送方法的选择以及整合事件的基因型分析。我们还描述了一种计算crRNA设计算法以避免潜在的脱靶效应,以及用于DNA插入多重化的CRISPR阵列克隆流程。从可用的质粒构建体开始,使用标准分子生物学技术,在1周内即可获得含有新型感兴趣基因组整合事件的克隆菌株。