Institute for Microelectronics and Microsystems - National Research Council (IMM-CNR), Via C. Olivetti 2, Agrate, Milan, 20864, Italy.
Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego, 30, Genova, 16136, Italy.
Adv Mater. 2023 Jun;35(23):e2211037. doi: 10.1002/adma.202211037. Epub 2023 Apr 26.
The integration of 2D materials in triboelectric nanogenerators (TENGs) is known to increase the mechanical-to-electrical power conversion efficiency. 2D materials are used in TENGs with multiple roles as triboelectric material, charge-trapping fillers, or as electrodes. Here, novel TENGs based on few-layers graphene (FLG) electrodes and stable gel electrolytes composed of liquid phase exfoliated 2D-transition metal dichalcogenides and polyvinyl alcohol are developed. TENGs embedding FLG and gel composites show competitive open-circuit voltage (≈ 300 V), instant peak power (530 mW m ), and stability (> 11 months). These values correspond to a seven-fold higher electrical output compared to TENGs embedding bare FLG electrodes. It is demonstrated that such a significant improvement depends on the high electrical double-layer capacitance (EDLC) of FLG electrodes functionalized with the gel composites. The wet encapsulation of the TENGs is shown to be an effective strategy to increase their power output further highlighting the EDLC role. It is also shown that the EDLC is dependent upon the transition metal (W vs Mo) rather than the relative abundance of 1T or 2H phases. Overall, this work lays down the roots for novel sustainable electrochemical-(e)-TENGs developed exploiting strategies typically used in electrochemical capacitors.
二维(2D)材料在摩擦纳米发电机(TENG)中的集成被认为可以提高机械到电力的能量转换效率。2D 材料在 TENG 中具有多种作用,例如摩擦电材料、电荷捕获填料或电极。在这里,开发了基于少层石墨烯(FLG)电极和由液相剥离的二维过渡金属二硫化物和聚乙烯醇组成的稳定凝胶电解质的新型 TENG。嵌入 FLG 和凝胶复合材料的 TENG 显示出具有竞争力的开路电压(≈300 V)、即时峰值功率(530 mW m)和稳定性(>11 个月)。这些值与嵌入裸 FLG 电极的 TENG 相比,电输出提高了七倍。结果表明,这种显著的改进取决于用凝胶复合材料功能化的 FLG 电极的高双电层电容(EDLC)。研究表明,TENG 的湿封装是提高其功率输出的有效策略,进一步突出了 EDLC 的作用。研究还表明,EDLC 取决于过渡金属(W 对 Mo),而不是 1T 或 2H 相的相对丰度。总的来说,这项工作为利用通常用于电化学电容器的策略开发新型可持续电化学(e)-TENG 奠定了基础。