文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 GRIMER 进行污染检测和微生物组探索。

Contamination detection and microbiome exploration with GRIMER.

机构信息

Data Analytics and Computational Statistics, Hasso Plattner Insititute, Digital Engineering Faculty, University of Potsdam, Potsdam 14482, Germany.

Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany.

出版信息

Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad017. Epub 2023 Mar 30.


DOI:10.1093/gigascience/giad017
PMID:36994872
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10061425/
Abstract

BACKGROUND: Contamination detection is a important step that should be carefully considered in early stages when designing and performing microbiome studies to avoid biased outcomes. Detecting and removing true contaminants is challenging, especially in low-biomass samples or in studies lacking proper controls. Interactive visualizations and analysis platforms are crucial to better guide this step, to help to identify and detect noisy patterns that could potentially be contamination. Additionally, external evidence, like aggregation of several contamination detection methods and the use of common contaminants reported in the literature, could help to discover and mitigate contamination. RESULTS: We propose GRIMER, a tool that performs automated analyses and generates a portable and interactive dashboard integrating annotation, taxonomy, and metadata. It unifies several sources of evidence to help detect contamination. GRIMER is independent of quantification methods and directly analyzes contingency tables to create an interactive and offline report. Reports can be created in seconds and are accessible for nonspecialists, providing an intuitive set of charts to explore data distribution among observations and samples and its connections with external sources. Further, we compiled and used an extensive list of possible external contaminant taxa and common contaminants with 210 genera and 627 species reported in 22 published articles. CONCLUSION: GRIMER enables visual data exploration and analysis, supporting contamination detection in microbiome studies. The tool and data presented are open source and available at https://gitlab.com/dacs-hpi/grimer.

摘要

背景:在设计和进行微生物组研究时,污染检测是一个重要的步骤,应在早期阶段仔细考虑,以避免产生有偏差的结果。检测和去除真正的污染物具有挑战性,尤其是在低生物量样本或缺乏适当对照的研究中。交互式可视化和分析平台对于更好地指导这一步骤至关重要,有助于识别和检测可能是污染的噪声模式。此外,外部证据,如几种污染检测方法的聚合以及使用文献中报道的常见污染物,可以帮助发现和减轻污染。

结果:我们提出了 GRIMER,这是一种执行自动化分析并生成带有注释、分类和元数据的便携式交互式仪表板的工具。它统一了几种来源的证据,以帮助检测污染。GRIMER 不依赖于定量方法,而是直接分析列联表以创建交互式离线报告。报告可以在几秒钟内创建,非专业人员也可以访问,提供了一组直观的图表,用于探索观测值和样本之间的数据分布及其与外部来源的连接。此外,我们编译并使用了一份广泛的可能的外部污染物分类群和常见污染物列表,其中包括 22 篇已发表文章中报道的 210 个属和 627 个种。

结论:GRIMER 支持微生物组研究中的污染检测,实现了可视化数据探索和分析。该工具和呈现的数据是开源的,可以在 https://gitlab.com/dacs-hpi/grimer 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/86bcefa8cb1c/giad017fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/e4dfc58efe97/giad017fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/b112b77e3017/giad017fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/0815dc318783/giad017fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/b94eed36b658/giad017fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/1a243b3d8397/giad017fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/86bcefa8cb1c/giad017fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/e4dfc58efe97/giad017fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/b112b77e3017/giad017fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/0815dc318783/giad017fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/b94eed36b658/giad017fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/1a243b3d8397/giad017fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1375/10061425/86bcefa8cb1c/giad017fig6.jpg

相似文献

[1]
Contamination detection and microbiome exploration with GRIMER.

Gigascience. 2022-12-28

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
Calour: an Interactive, Microbe-Centric Analysis Tool.

mSystems. 2019-1-29

[4]
Microbiome Toolbox: methodological approaches to derive and visualize microbiome trajectories.

Bioinformatics. 2023-1-1

[5]
The impact of kit, environment, and sampling contamination on the observed microbiome of bovine milk.

mSystems. 2024-6-18

[6]
Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations.

Trends Microbiol. 2018-11-26

[7]
De novo identification of microbial contaminants in low microbial biomass microbiomes with Squeegee.

Nat Commun. 2022-11-10

[8]
Benchmarking MicrobIEM - a user-friendly tool for decontamination of microbiome sequencing data.

BMC Biol. 2023-11-23

[9]
Critical Relevance of Stochastic Effects on Low-Bacterial-Biomass 16S rRNA Gene Analysis.

mBio. 2020-6-9

[10]
Explorative visual analytics on interval-based genomic data and their metadata.

BMC Bioinformatics. 2017-12-4

引用本文的文献

[1]
State-of-the-art approaches in the investigation of human seminal bacteriome using metagenomic methods.

Front Reprod Health. 2025-6-5

[2]
CleanSeqU algorithm for decontamination of catheterized urine 16S rRNA sequencing data.

Sci Rep. 2025-6-2

[3]
micRoclean: an R package for decontaminating low-biomass 16S-rRNA microbiome data.

Front Bioinform. 2025-5-8

[4]
Impact of microbiological molecular methodologies on adaptive sampling using nanopore sequencing in metagenomic studies.

Environ Microbiome. 2025-5-5

[5]
Bacterial DNA Contamination of Commercial PCR Enzymes: Considerations for Microbiome Protocols and Analysis.

Microorganisms. 2025-3-25

[6]
Experimental tests challenge the evidence of a healthy human blood microbiome.

FEBS J. 2025-2

[7]
Towards facilitated interpretation of shotgun metagenomics long-read sequencing data analyzed with KMA for the detection of bacterial pathogens and their antimicrobial resistance genes.

Front Microbiol. 2024-4-4

[8]
Snowflake: visualizing microbiome abundance tables as multivariate bipartite graphs.

Front Bioinform. 2024-2-5

本文引用的文献

[1]
Exploring the Microbiome Analysis and Visualization Landscape.

Front Bioinform. 2021-12-2

[2]
Namco: a microbiome explorer.

Microb Genom. 2022-8

[3]
Mian: interactive web-based microbiome data table visualization and machine learning platform.

Bioinformatics. 2022-1-27

[4]
Characterizing Microbiomes via Sequencing of Marker Loci: Techniques To Improve Throughput, Account for Cross-Contamination, and Reduce Cost.

mSystems. 2021-8-31

[5]
animalcules: interactive microbiome analytics and visualization in R.

Microbiome. 2021-3-28

[6]
Genome-resolved metagenomics using environmental and clinical samples.

Brief Bioinform. 2021-9-2

[7]
OpenContami: a web-based application for detecting microbial contaminants in next-generation sequencing data.

Bioinformatics. 2021-9-29

[8]
wiSDOM: a visual and statistical analytics for interrogating microbiome.

Bioinformatics. 2021-9-9

[9]
Group therapy on in utero colonization: seeking common truths and a way forward.

Microbiome. 2021-1-12

[10]
Lessons learned from the prenatal microbiome controversy.

Microbiome. 2021-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索