Data Analytics and Computational Statistics, Hasso Plattner Insititute, Digital Engineering Faculty, University of Potsdam, Potsdam 14482, Germany.
Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany.
Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad017. Epub 2023 Mar 30.
BACKGROUND: Contamination detection is a important step that should be carefully considered in early stages when designing and performing microbiome studies to avoid biased outcomes. Detecting and removing true contaminants is challenging, especially in low-biomass samples or in studies lacking proper controls. Interactive visualizations and analysis platforms are crucial to better guide this step, to help to identify and detect noisy patterns that could potentially be contamination. Additionally, external evidence, like aggregation of several contamination detection methods and the use of common contaminants reported in the literature, could help to discover and mitigate contamination. RESULTS: We propose GRIMER, a tool that performs automated analyses and generates a portable and interactive dashboard integrating annotation, taxonomy, and metadata. It unifies several sources of evidence to help detect contamination. GRIMER is independent of quantification methods and directly analyzes contingency tables to create an interactive and offline report. Reports can be created in seconds and are accessible for nonspecialists, providing an intuitive set of charts to explore data distribution among observations and samples and its connections with external sources. Further, we compiled and used an extensive list of possible external contaminant taxa and common contaminants with 210 genera and 627 species reported in 22 published articles. CONCLUSION: GRIMER enables visual data exploration and analysis, supporting contamination detection in microbiome studies. The tool and data presented are open source and available at https://gitlab.com/dacs-hpi/grimer.
背景:在设计和进行微生物组研究时,污染检测是一个重要的步骤,应在早期阶段仔细考虑,以避免产生有偏差的结果。检测和去除真正的污染物具有挑战性,尤其是在低生物量样本或缺乏适当对照的研究中。交互式可视化和分析平台对于更好地指导这一步骤至关重要,有助于识别和检测可能是污染的噪声模式。此外,外部证据,如几种污染检测方法的聚合以及使用文献中报道的常见污染物,可以帮助发现和减轻污染。
结果:我们提出了 GRIMER,这是一种执行自动化分析并生成带有注释、分类和元数据的便携式交互式仪表板的工具。它统一了几种来源的证据,以帮助检测污染。GRIMER 不依赖于定量方法,而是直接分析列联表以创建交互式离线报告。报告可以在几秒钟内创建,非专业人员也可以访问,提供了一组直观的图表,用于探索观测值和样本之间的数据分布及其与外部来源的连接。此外,我们编译并使用了一份广泛的可能的外部污染物分类群和常见污染物列表,其中包括 22 篇已发表文章中报道的 210 个属和 627 个种。
结论:GRIMER 支持微生物组研究中的污染检测,实现了可视化数据探索和分析。该工具和呈现的数据是开源的,可以在 https://gitlab.com/dacs-hpi/grimer 上获取。
Gigascience. 2022-12-28
Cochrane Database Syst Rev. 2022-2-1
mSystems. 2019-1-29
Bioinformatics. 2023-1-1
Trends Microbiol. 2018-11-26
BMC Bioinformatics. 2017-12-4
Front Reprod Health. 2025-6-5
Front Bioinform. 2025-5-8
Front Bioinform. 2024-2-5
Front Bioinform. 2021-12-2
Microb Genom. 2022-8
Bioinformatics. 2022-1-27
Microbiome. 2021-3-28
Brief Bioinform. 2021-9-2
Bioinformatics. 2021-9-9
Microbiome. 2021-1-12
Microbiome. 2021-1-12