Suppr超能文献

micRoclean:一个用于净化低生物量16S-rRNA微生物组数据的R包。

micRoclean: an R package for decontaminating low-biomass 16S-rRNA microbiome data.

作者信息

Griffard-Smith Rachel, Schueddig Emily, Mahoney Diane E, Chalise Prabhakar, Koestler Devin C, Pei Dong

机构信息

Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States.

School of Nursing, University of Kansas Medical Center, Kansas City, KS, United States.

出版信息

Front Bioinform. 2025 May 8;5:1556361. doi: 10.3389/fbinf.2025.1556361. eCollection 2025.

Abstract

In 16S-rRNA microbiome studies, cross-contamination and environmental contamination can obscure true biological signal. This contamination is particularly problematic in low-biomass studies, which are characterized by samples with a small amount of microbial DNA. Although multiple methods and packages for decontaminating microbiome data exist, there is no consensus on the most appropriate tool for decontamination based on the individual research study design and how to quantify the impact of removing identified contaminants to avoid over-filtering. To address these gaps, we introduce micRoclean, an open-source R package that contains two distinct microbiome decontamination pipelines with guidance on which to select based on the downstream goals of the research study and study design. This package integrates and expands on existing packages for microbiome decontamination and analysis for convenience of users. Furthermore, micRoclean also implements a filtering loss statistic to quantify the impact of decontamination on the overall covariance structure of the data. In this paper, we demonstrate the utility of micRoclean through implementation on example data, illustrating that micRoclean effectively and intuitively decontaminates microbiome data. Further, we demonstrate through a multi-batch simulated microbiome sample that micRoclean matches or outperforms tools with similar objectives. This package is freely available from GitHub repository rachelgriffard/micRoclean.

摘要

在16S-rRNA微生物组研究中,交叉污染和环境污染会掩盖真实的生物学信号。这种污染在低生物量研究中尤其成问题,这类研究的特点是样本中微生物DNA含量较少。尽管存在多种用于净化微生物组数据的方法和软件包,但对于基于个体研究设计的最合适的净化工具以及如何量化去除已识别污染物的影响以避免过度过滤,尚无共识。为了解决这些差距,我们引入了micRoclean,这是一个开源的R软件包,它包含两个不同的微生物组净化管道,并根据研究的下游目标和研究设计提供了选择指导。该软件包整合并扩展了现有的微生物组净化和分析软件包,以方便用户使用。此外,micRoclean还实现了一个过滤损失统计量,以量化净化对数据整体协方差结构的影响。在本文中,我们通过在示例数据上的实现展示了micRoclean的效用,表明micRoclean能够有效且直观地净化微生物组数据。此外,我们通过一个多批次模拟微生物组样本证明,micRoclean与具有类似目标的工具相当或更胜一筹。该软件包可从GitHub仓库rachelgriffard/micRoclean免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddc1/12095030/2dbb3d719fd9/fbinf-05-1556361-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验