Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
Chair of Environmental Medicine, Technical University of Munich, Munich, Germany.
BMC Biol. 2023 Nov 23;21(1):269. doi: 10.1186/s12915-023-01737-5.
BACKGROUND: Microbiome analysis is becoming a standard component in many scientific studies, but also requires extensive quality control of the 16S rRNA gene sequencing data prior to analysis. In particular, when investigating low-biomass microbial environments such as human skin, contaminants distort the true microbiome sample composition and need to be removed bioinformatically. We introduce MicrobIEM, a novel tool to bioinformatically remove contaminants using negative controls. RESULTS: We benchmarked MicrobIEM against five established decontamination approaches in four 16S rRNA amplicon sequencing datasets: three serially diluted mock communities (10-10 cells, 0.4-80% contamination) with even or staggered taxon compositions and a skin microbiome dataset. Results depended strongly on user-selected algorithm parameters. Overall, sample-based algorithms separated mock and contaminant sequences best in the even mock, whereas control-based algorithms performed better in the two staggered mocks, particularly in low-biomass samples (≤ 10 cells). We show that a correct decontamination benchmarking requires realistic staggered mock communities and unbiased evaluation measures such as Youden's index. In the skin dataset, the Decontam prevalence filter and MicrobIEM's ratio filter effectively reduced common contaminants while keeping skin-associated genera. CONCLUSIONS: MicrobIEM's ratio filter for decontamination performs better or as good as established bioinformatic decontamination tools. In contrast to established tools, MicrobIEM additionally provides interactive plots and supports selecting appropriate filtering parameters via a user-friendly graphical user interface. Therefore, MicrobIEM is the first quality control tool for microbiome experts without coding experience.
背景:微生物组分析正在成为许多科学研究的标准组成部分,但在进行分析之前,还需要对 16S rRNA 基因测序数据进行广泛的质量控制。特别是在研究低生物量微生物环境(如人体皮肤)时,污染物会扭曲真实的微生物组样本组成,需要通过生物信息学去除。我们引入了 MicrobIEM,这是一种使用阴性对照来生物信息学去除污染物的新工具。
结果:我们在四个 16S rRNA 扩增子测序数据集(三个连续稀释的模拟群落(10-10 个细胞,0.4-80%污染),具有均匀或交错的分类群组成,以及一个皮肤微生物组数据集)中,将 MicrobIEM 与五种已建立的去污方法进行了基准测试。结果强烈依赖于用户选择的算法参数。总体而言,基于样本的算法在均匀模拟中最好地分离了模拟和污染物序列,而基于对照的算法在两个交错模拟中表现更好,特别是在低生物量样本(≤10 个细胞)中。我们表明,正确的去污基准测试需要现实的交错模拟群落和公正的评估措施,如 Youden 指数。在皮肤数据集上,Decontam 患病率过滤器和 MicrobIEM 的比率过滤器有效地减少了常见的污染物,同时保留了与皮肤相关的属。
结论:MicrobIEM 的比率过滤器在去污方面的性能优于或与已建立的生物信息学去污工具一样好。与已建立的工具不同,MicrobIEM 还提供了交互式图形,并通过用户友好的图形用户界面支持选择适当的过滤参数。因此,MicrobIEM 是第一个没有编码经验的微生物组专家的质量控制工具。
Microbiome. 2022-10-19
Front Bioinform. 2025-5-8
Eur J Clin Microbiol Infect Dis. 2025-5-10
Brief Bioinform. 2025-3-4
Cell Rep Med. 2024-10-15
Comput Struct Biotechnol J. 2021-12-15
Front Microbiol. 2021-1-12
Microbiome. 2020-6-26