文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基准测试 MicrobIEM-一个用于宏基因组测序数据去污染的用户友好工具。

Benchmarking MicrobIEM - a user-friendly tool for decontamination of microbiome sequencing data.

机构信息

Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.

Chair of Environmental Medicine, Technical University of Munich, Munich, Germany.

出版信息

BMC Biol. 2023 Nov 23;21(1):269. doi: 10.1186/s12915-023-01737-5.


DOI:10.1186/s12915-023-01737-5
PMID:37996810
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10666409/
Abstract

BACKGROUND: Microbiome analysis is becoming a standard component in many scientific studies, but also requires extensive quality control of the 16S rRNA gene sequencing data prior to analysis. In particular, when investigating low-biomass microbial environments such as human skin, contaminants distort the true microbiome sample composition and need to be removed bioinformatically. We introduce MicrobIEM, a novel tool to bioinformatically remove contaminants using negative controls. RESULTS: We benchmarked MicrobIEM against five established decontamination approaches in four 16S rRNA amplicon sequencing datasets: three serially diluted mock communities (10-10 cells, 0.4-80% contamination) with even or staggered taxon compositions and a skin microbiome dataset. Results depended strongly on user-selected algorithm parameters. Overall, sample-based algorithms separated mock and contaminant sequences best in the even mock, whereas control-based algorithms performed better in the two staggered mocks, particularly in low-biomass samples (≤ 10 cells). We show that a correct decontamination benchmarking requires realistic staggered mock communities and unbiased evaluation measures such as Youden's index. In the skin dataset, the Decontam prevalence filter and MicrobIEM's ratio filter effectively reduced common contaminants while keeping skin-associated genera. CONCLUSIONS: MicrobIEM's ratio filter for decontamination performs better or as good as established bioinformatic decontamination tools. In contrast to established tools, MicrobIEM additionally provides interactive plots and supports selecting appropriate filtering parameters via a user-friendly graphical user interface. Therefore, MicrobIEM is the first quality control tool for microbiome experts without coding experience.

摘要

背景:微生物组分析正在成为许多科学研究的标准组成部分,但在进行分析之前,还需要对 16S rRNA 基因测序数据进行广泛的质量控制。特别是在研究低生物量微生物环境(如人体皮肤)时,污染物会扭曲真实的微生物组样本组成,需要通过生物信息学去除。我们引入了 MicrobIEM,这是一种使用阴性对照来生物信息学去除污染物的新工具。

结果:我们在四个 16S rRNA 扩增子测序数据集(三个连续稀释的模拟群落(10-10 个细胞,0.4-80%污染),具有均匀或交错的分类群组成,以及一个皮肤微生物组数据集)中,将 MicrobIEM 与五种已建立的去污方法进行了基准测试。结果强烈依赖于用户选择的算法参数。总体而言,基于样本的算法在均匀模拟中最好地分离了模拟和污染物序列,而基于对照的算法在两个交错模拟中表现更好,特别是在低生物量样本(≤10 个细胞)中。我们表明,正确的去污基准测试需要现实的交错模拟群落和公正的评估措施,如 Youden 指数。在皮肤数据集上,Decontam 患病率过滤器和 MicrobIEM 的比率过滤器有效地减少了常见的污染物,同时保留了与皮肤相关的属。

结论:MicrobIEM 的比率过滤器在去污方面的性能优于或与已建立的生物信息学去污工具一样好。与已建立的工具不同,MicrobIEM 还提供了交互式图形,并通过用户友好的图形用户界面支持选择适当的过滤参数。因此,MicrobIEM 是第一个没有编码经验的微生物组专家的质量控制工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/7c0ed921c789/12915_2023_1737_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/934b29020d32/12915_2023_1737_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/85dbdba50fe7/12915_2023_1737_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/1c9992d6738d/12915_2023_1737_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/02b536787794/12915_2023_1737_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/3d5a38e3808d/12915_2023_1737_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/7c0ed921c789/12915_2023_1737_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/934b29020d32/12915_2023_1737_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/85dbdba50fe7/12915_2023_1737_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/1c9992d6738d/12915_2023_1737_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/02b536787794/12915_2023_1737_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/3d5a38e3808d/12915_2023_1737_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5771/10666409/7c0ed921c789/12915_2023_1737_Fig6_HTML.jpg

相似文献

[1]
Benchmarking MicrobIEM - a user-friendly tool for decontamination of microbiome sequencing data.

BMC Biol. 2023-11-23

[2]
Controlling for Contaminants in Low-Biomass 16S rRNA Gene Sequencing Experiments.

mSystems. 2019-6-4

[3]
Optimizing 16S rRNA gene profile analysis from low biomass nasopharyngeal and induced sputum specimens.

BMC Microbiol. 2020-5-12

[4]
Managing Contamination and Diverse Bacterial Loads in 16S rRNA Deep Sequencing of Clinical Samples: Implications of the Law of Small Numbers.

mBio. 2021-6-29

[5]
Decontamination of 16S rRNA gene amplicon sequence datasets based on bacterial load assessment by qPCR.

BMC Microbiol. 2016-4-23

[6]
Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies.

Microbiome. 2016-11-25

[7]
Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform.

BMC Microbiol. 2017-1-21

[8]
A comprehensive evaluation of the sl1p pipeline for 16S rRNA gene sequencing analysis.

Microbiome. 2017-8-14

[9]
LotuS2: an ultrafast and highly accurate tool for amplicon sequencing analysis.

Microbiome. 2022-10-19

[10]
Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data.

Microbiome. 2018-12-17

引用本文的文献

[1]
micRoclean: an R package for decontaminating low-biomass 16S-rRNA microbiome data.

Front Bioinform. 2025-5-8

[2]
Nationwide multicentre study of Nanopore long-read sequencing for 16S rRNA-species identification.

Eur J Clin Microbiol Infect Dis. 2025-5-10

[3]
Impact of microbiological molecular methodologies on adaptive sampling using nanopore sequencing in metagenomic studies.

Environ Microbiome. 2025-5-5

[4]
Bacterial DNA Contamination of Commercial PCR Enzymes: Considerations for Microbiome Protocols and Analysis.

Microorganisms. 2025-3-25

[5]
Bioinformatic approaches to blood and tissue microbiome analyses: challenges and perspectives.

Brief Bioinform. 2025-3-4

[6]
De-biasing microbiome sequencing data: bacterial morphology-based correction of extraction bias and correlates of chimera formation.

Microbiome. 2025-2-4

[7]
Standardization of gut microbiome analysis in sports.

Cell Rep Med. 2024-10-15

[8]
Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges.

Nat Metab. 2024-7

本文引用的文献

[1]
Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling.

ISME Commun. 2021-6-29

[2]
Combining 16S Sequencing and qPCR Quantification Reveals Driven Bacterial Overgrowth in the Skin of Severe Atopic Dermatitis Patients.

Biomolecules. 2023-6-23

[3]
Bacterial low-abundant taxa are key determinants of a healthy airway metagenome in the early years of human life.

Comput Struct Biotechnol J. 2021-12-15

[4]
Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions.

Nat Microbiol. 2022-1

[5]
The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review.

J Reprod Immunol. 2022-2

[6]
OpenContami: a web-based application for detecting microbial contaminants in next-generation sequencing data.

Bioinformatics. 2021-9-29

[7]
The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation.

BioData Min. 2021-2-4

[8]
Effects of Rare Microbiome Taxa Filtering on Statistical Analysis.

Front Microbiol. 2021-1-12

[9]
Developing standards for the microbiome field.

Microbiome. 2020-6-26

[10]
Skin pH-dependent Staphylococcus aureus abundance as predictor for increasing atopic dermatitis severity.

Allergy. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索