Suppr超能文献

利用深度神经网络提高乳腺 X 光图像中的乳腺病变检测。

Improved breast lesion detection in mammogram images using a deep neural network.

机构信息

Department of Radiology, Peking University First Hospital, Beijing, China.

Beijing Yizhun Medical AI Co., Ltd, Beijing, China.

出版信息

Diagn Interv Radiol. 2023 Jul 20;29(4):588-595. doi: 10.4274/dir.2022.22826. Epub 2023 Mar 20.

Abstract

PURPOSE

This study aimed to investigate the effect of using a deep neural network (DNN) in breast cancer (BC) detection.

METHODS

In this retrospective study, a DNN-based model was constructed from a total of 880 mammograms that 220 patients underwent between April and June 2020. The mammograms were reviewed by two senior and two junior radiologists with and without the aid of the DNN model. The performance of the network was assessed by comparing the area under the curve (AUC) and receiver operating characteristic curves for the detection of four features of malignancy (masses, calcifications, asymmetries, and architectural distortions), with and without the aid of the DNN model and by the senior and junior radiologists. Additionally, the effect of utilizing the DNN on diagnosis time for both the senior and junior radiologists was evaluated.

RESULTS

The AUCs of the model for the detection of mass and calcification were 0.877 and 0.937, respectively. In the senior radiologist group, the AUC values for evaluation of mass, calcification, and asymmetric compaction were significantly higher with the DNN model than those obtained without the model. Similar effects were observed in the junior radiologist group, but the increase in the AUC values was even more dramatic. The median mammogram assessment time of the junior and senior radiologists was 572 (357-951) s, and 273.5 (129-469) s, respectively, with the DNN model, and the corresponding assessment time without the model, was 739 (445-1003) s and 321 (195-491) s, respectively.

CONCLUSION

The DNN model exhibited high accuracy in detecting the four named features of BC and effectively shortened the review time by both senior and junior radiologists.

摘要

目的

本研究旨在探讨使用深度神经网络(DNN)在乳腺癌(BC)检测中的作用。

方法

在这项回顾性研究中,构建了一个基于 DNN 的模型,该模型来自于 2020 年 4 月至 6 月期间接受检查的 220 名患者的 880 张乳房 X 光片。由两位高级和两位初级放射科医生在有和没有 DNN 模型的帮助下对这些乳房 X 光片进行了审查。通过比较有和没有 DNN 模型以及高级和初级放射科医生在检测恶性肿瘤的四个特征(肿块、钙化、不对称和结构扭曲)时的曲线下面积(AUC)和接受者操作特征曲线,评估网络的性能。此外,还评估了利用 DNN 对高级和初级放射科医生诊断时间的影响。

结果

模型对肿块和钙化检测的 AUC 分别为 0.877 和 0.937。在高级放射科医生组中,在使用 DNN 模型时,评估肿块、钙化和不对称性致密时的 AUC 值明显高于不使用模型时的 AUC 值。在初级放射科医生组中也观察到了类似的效果,但 AUC 值的增加更为显著。使用 DNN 模型时,初级和高级放射科医生评估乳房 X 光片的中位数时间分别为 572(357-951)s 和 273.5(129-469)s,而不使用模型时,评估时间分别为 739(445-1003)s 和 321(195-491)s。

结论

DNN 模型在检测 BC 的四个命名特征方面表现出很高的准确性,并有效地缩短了高级和初级放射科医生的审查时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b685/10679640/4ffc688564bb/DIR-29-588-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验