Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
J Biomol Struct Dyn. 2024 Jan-Feb;42(2):747-758. doi: 10.1080/07391102.2023.2194996. Epub 2023 Mar 30.
Aminoacyl-tRNA synthetases are crucial enzymes involved in protein synthesis and various cellular physiological reactions. Aside from their standard role in linking amino acids to the corresponding tRNAs, they also impact protein homeostasis by controlling the level of soluble amino acids within the cell. For instance, leucyl-tRNA synthetase (LARS1) acts as a leucine sensor for the mammalian target of rapamycin complex 1 (mTORC1), and may also function as a probable GTPase-activating protein (GAP) for the RagD subunit of the heteromeric activator of mTORC1. In turn, mTORC1 regulates cellular processes, such as protein synthesis, autophagy, and cell growth, and is implicated in various human diseases including cancer, obesity, diabetes, and neurodegeneration. Hence, inhibitors of mTORC1 or a deregulated mTORC1 pathway may offer potential cancer therapies. In this study, we investigated the structural requirements for preventing the sensing and signal transmission from LARS to mTORC1. Building upon recent studies on mTORC1 regulation activation by leucine, we lay the foundation for the development of chemotherapeutic agents against mTORC1 that can overcome resistance to rapamycin. Using a combination of in-silico approaches to develop and validate an alternative interaction model, discussing its benefits and advancements. Finally, we identified a set of compounds ready for testing to prevent LARS1/RagD protein-protein interactions. We establish a basis for creating chemotherapeutic drugs targeting mTORC1, which can conquer resistance to rapamycin. We utilize in-silico methods to generate and confirm an alternative interaction model, outlining its advantages and improvements, and pinpoint a group of novel substances that can prevent LARS1/RagD interactions.Communicated by Ramaswamy H. Sarma.
氨酰-tRNA 合成酶是参与蛋白质合成和各种细胞生理反应的关键酶。除了在将氨基酸连接到相应的 tRNA 方面的标准作用外,它们还通过控制细胞内可溶性氨基酸的水平来影响蛋白质的动态平衡。例如,亮氨酰-tRNA 合成酶(LARS1)作为哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)的亮氨酸传感器,并且还可能作为 mTORC1 的异源激活剂 RagD 亚基的 GTPase 激活蛋白(GAP)发挥作用。反过来,mTORC1 调节细胞过程,如蛋白质合成、自噬和细胞生长,并与包括癌症、肥胖症、糖尿病和神经退行性疾病在内的各种人类疾病有关。因此,mTORC1 的抑制剂或失调的 mTORC1 途径可能为癌症治疗提供潜在的方法。在这项研究中,我们研究了防止 LARS 向 mTORC1 传递感应和信号的结构要求。基于最近关于亮氨酸激活 mTORC1 调节的研究,我们为开发针对 mTORC1 的化学治疗剂奠定了基础,这些化学治疗剂可以克服对雷帕霉素的耐药性。我们使用结合了计算机模拟方法来开发和验证替代相互作用模型,讨论其优势和进步。最后,我们确定了一组化合物,这些化合物可以用于测试以防止 LARS1/RagD 蛋白-蛋白相互作用。我们为创建针对 mTORC1 的化学治疗药物奠定了基础,这些药物可以克服对雷帕霉素的耐药性。我们使用计算机模拟方法生成并验证替代相互作用模型,描述其优势和改进,并确定一组可以防止 LARS1/RagD 相互作用的新型化合物。由 Ramaswamy H. Sarma 传达。