Suppr超能文献

基于网络的预防性医疗患者推荐系统:实证研究命题方案

Web-Based Patient Recommender Systems for Preventive Care: Protocol for Empirical Research Propositions.

作者信息

Howell Pamella, Aryal Arun, Wu Crystal

机构信息

Department of Information Systems, College of Business and Economics, California State University, Los Angeles, Los Angeles, CA, United States.

出版信息

JMIR Res Protoc. 2023 Mar 30;12:e43316. doi: 10.2196/43316.

Abstract

BACKGROUND

Preventive care helps patients identify and address medical issues early when they are easy to treat. The internet offers vast information about preventive measures, but the sheer volume of data can be overwhelming for individuals to process. To help individuals navigate this information, recommender systems filter and recommend relevant information to specific users. Despite their popularity in other fields, such as e-commerce, recommender systems have yet to be extensively studied as tools to support the implementation of prevention strategies in health care. This underexplored area presents an opportunity for recommender systems to serve as a complementary tool for medical professionals to enhance patient-centered decision-making and for patients to access health information. Thus, these systems can potentially improve the delivery of preventive care.

OBJECTIVE

This study proposes practical, evidence-based propositions. It aims to identify the key factors influencing patients' use of recommender systems and outlines a study design, methods for creating a survey, and techniques for conducting an analysis.

METHODS

This study proposes a 6-stage approach to examine user perceptions of the factors that may influence the use of recommender systems for preventive care. First, we formulate 6 research propositions that can be developed later into hypotheses for empirical testing. Second, we will create a survey instrument by collecting items from extant literature and then verify their relevance using expert analysis. This stage will continue with content and face validity testing to ensure the robustness of the selected items. Using Qualtrics (Qualtrics), the survey can be customized and prepared for deployment on Amazon Mechanical Turk. Third, we will obtain institutional review board approval because this is a human subject study. In the fourth stage, we propose using the survey to collect data from approximately 600 participants on Amazon Mechanical Turk and then using R to analyze the research model. This platform will serve as a recruitment tool and the method of obtaining informed consent. In our fifth stage, we will perform principal component analysis, Harman Single Factor test, exploratory factor analysis, and correlational analysis; examine the reliability and convergent validity of individual items; test if multicollinearity exists; and complete a confirmatory factor analysis.

RESULTS

Data collection and analysis will begin after institutional review board approval is obtained.

CONCLUSIONS

In pursuit of better health outcomes, low costs, and improved patient and provider experiences, the integration of recommender systems with health care services can extend the reach and scale of preventive care. Examining recommender systems for preventive care can be vital in achieving the quadruple aims by advancing the steps toward precision medicine and applying best practices.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/43316.

摘要

背景

预防性护理有助于患者在医疗问题易于治疗的早期阶段识别并解决这些问题。互联网提供了大量关于预防措施的信息,但数据量过大,个人难以处理。为帮助个人梳理这些信息,推荐系统会筛选并向特定用户推荐相关信息。尽管推荐系统在电子商务等其他领域很受欢迎,但作为支持医疗保健领域预防策略实施的工具,其尚未得到广泛研究。这个未被充分探索的领域为推荐系统提供了一个机会,使其能够作为医疗专业人员增强以患者为中心的决策制定以及患者获取健康信息的补充工具。因此,这些系统有可能改善预防性护理的提供。

目的

本研究提出实用的、基于证据的命题。旨在确定影响患者使用推荐系统的关键因素,并概述研究设计、创建调查问卷的方法以及进行分析的技术。

方法

本研究提出一种六阶段方法,以检验用户对可能影响预防性护理推荐系统使用的因素的看法。首先,我们制定6个研究命题,这些命题随后可发展为用于实证检验的假设。其次,我们将通过从现有文献中收集项目来创建一份调查问卷,然后使用专家分析验证其相关性。此阶段将继续进行内容和表面效度测试,以确保所选项目的稳健性。使用Qualtrics(Qualtrics公司),该调查问卷可进行定制,并准备好在亚马逊土耳其机器人平台上部署。第三,由于这是一项人体研究,我们将获得机构审查委员会的批准。在第四阶段,我们建议使用该调查问卷从亚马逊土耳其机器人平台上的约600名参与者收集数据,然后使用R语言分析研究模型。该平台将作为招募工具和获取知情同意的方法。在第五阶段,我们将进行主成分分析、哈曼单因素检验、探索性因素分析和相关性分析;检查各个项目的可靠性和收敛效度;测试是否存在多重共线性;并完成验证性因素分析。

结果

在获得机构审查委员会批准后将开始数据收集和分析。

结论

为了追求更好的健康结果、降低成本以及改善患者和医疗服务提供者的体验,将推荐系统与医疗服务相结合可以扩大预防性护理的覆盖范围和规模。研究预防性护理推荐系统对于通过推进精准医疗步骤和应用最佳实践来实现四重目标至关重要。

国际注册报告识别号(IRRID):PRR1 - 10.2196/43316。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d460/10132006/e83d60e141d9/resprot_v12i1e43316_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验