Suppr超能文献

在一项大型队列研究中对自我报告的情绪和疼痛的关节轨迹进行建模和分类。

Modelling and classifying joint trajectories of self-reported mood and pain in a large cohort study.

作者信息

Das Rajenki, Muldoon Mark, Lunt Mark, McBeth John, Yimer Belay Birlie, House Thomas

机构信息

Department of Mathematics, University of Manchester, Manchester, United Kingdom.

Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester, United Kingdom.

出版信息

PLOS Digit Health. 2023 Mar 30;2(3):e0000204. doi: 10.1371/journal.pdig.0000204. eCollection 2023 Mar.

Abstract

It is well-known that mood and pain interact with each other, however individual-level variability in this relationship has been less well quantified than overall associations between low mood and pain. Here, we leverage the possibilities presented by mobile health data, in particular the "Cloudy with a Chance of Pain" study, which collected longitudinal data from the residents of the UK with chronic pain conditions. Participants used an App to record self-reported measures of factors including mood, pain and sleep quality. The richness of these data allows us to perform model-based clustering of the data as a mixture of Markov processes. Through this analysis we discover four endotypes with distinct patterns of co-evolution of mood and pain over time. The differences between endotypes are sufficiently large to play a role in clinical hypothesis generation for personalised treatments of comorbid pain and low mood.

摘要

众所周知,情绪和疼痛相互影响,然而这种关系在个体层面的变异性,相较于情绪低落与疼痛之间的总体关联,尚未得到充分量化。在此,我们利用移动健康数据所带来的可能性,特别是“疼痛有几率转阴”研究,该研究收集了患有慢性疼痛疾病的英国居民的纵向数据。参与者使用一款应用程序记录自我报告的各项因素指标,包括情绪、疼痛和睡眠质量。这些数据的丰富性使我们能够将数据作为马尔可夫过程的混合体进行基于模型的聚类分析。通过这一分析,我们发现了四种内型,它们在情绪和疼痛随时间共同演变的模式上各有不同。这些内型之间的差异足够大,能够在针对共病疼痛和情绪低落的个性化治疗的临床假设生成中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e05/10062665/6ab506ddc8fd/pdig.0000204.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验