Suppr超能文献

用于半胱氨酸p预测的基准工具。

Benchmarking Tools for Cysteine p Prediction.

作者信息

Awoonor-Williams Ernest, Golosov Andrei A, Hornak Viktor

机构信息

Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

出版信息

J Chem Inf Model. 2023 Apr 10;63(7):2170-2180. doi: 10.1021/acs.jcim.3c00004. Epub 2023 Mar 30.

Abstract

Accurate estimation of the p's of cysteine residues in proteins could inform targeted approaches in hit discovery. The p of a targetable cysteine residue in a disease-related protein is an important physiochemical parameter in covalent drug discovery, as it influences the fraction of nucleophilic thiolate amenable to chemical protein modification. Traditional structure-based tools are limited in their predictive accuracy of cysteine p's relative to other titratable residues. Additionally, there are limited comprehensive benchmark assessments for cysteine p predictive tools. This raises the need for extensive assessment and evaluation of methods for cysteine p prediction. Here, we report the performance of several computational p methods, including single-structure and ensemble-based approaches, on a diverse test set of experimental cysteine p's retrieved from the PKAD database. The dataset consisted of 16 wildtype and 10 mutant proteins with experimentally measured cysteine p values. Our results highlight that these methods are varied in their overall predictive accuracies. Among the test set of wildtype proteins evaluated, the best method (MOE) yielded a mean absolute error of 2.3 p units, highlighting the need for improvement of existing p methods for accurate cysteine p estimation. Given the limited accuracy of these methods, further development is needed before these approaches can be routinely employed to drive design decisions in early drug discovery efforts.

摘要

准确估计蛋白质中半胱氨酸残基的pKa值可为药物发现中的靶向方法提供信息。疾病相关蛋白质中可靶向的半胱氨酸残基的pKa值是共价药物发现中的一个重要物理化学参数,因为它会影响适合化学蛋白质修饰的亲核硫醇盐的比例。相对于其他可滴定残基,传统的基于结构的工具在预测半胱氨酸pKa值方面的准确性有限。此外,对半胱氨酸pKa预测工具的全面基准评估也很有限。这就需要对预测半胱氨酸pKa值的方法进行广泛的评估和评价。在此,我们报告了几种计算pKa值的方法(包括基于单结构和集成的方法)在从PKAD数据库中检索到的一组多样的实验半胱氨酸pKa值测试集上的性能。该数据集由16种野生型和10种突变型蛋白质组成,其半胱氨酸pKa值已通过实验测量。我们的结果表明,这些方法的整体预测准确性各不相同。在评估的野生型蛋白质测试集中,最佳方法(MOE)的平均绝对误差为2.3个pKa单位,这凸显了改进现有pKa方法以准确估计半胱氨酸pKa值的必要性。鉴于这些方法的准确性有限,在这些方法能够常规用于推动早期药物发现工作中的设计决策之前,还需要进一步发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验